
Formalising the classification of
groups of order pq

Peiran Wu

University of St Andrews

25 September 2024

About Lean

I Open-source functional programming language
I Interactive theorem prover – used to confirm the correctness of mathematical

proofs
I Accompanied by ”Mathlib”, a community-maintained open-source mathematical

library
I Google DeepMind’s AlphaProof (together with AlphaGeometry 2)
I Lots of gaps in the group theory section of Mathlib
I Demo – how to read Lean code

Groups of order pq

I Last year, there was a study group on Lean in St Andrews.
I As an exercise, I wanted to classify the groups of order 4, but someone beat me to

it.
I Just before Christmas, I formalised the classification of groups of order 6 (140

LoC, not golfed) and felt it wouldn’t be too hard to generalise.
I Scott Harper and I started working together on the classification of groups of

order pq.

Let p and q be positive prime numbers with p 6 q. Let G be a group
of order pq. Then exactly one of the following holds:
(1) G ∼= Cpq.
(2) p = q and G ∼= Cp ×Cp.
(3) p | q − 1, G is non-abelian, and G ∼= Cq oCp.

The statement

Let p and q be positive prime numbers with p 6 q. Let G be a group
of order pq. Then exactly one of the following holds:
(1) G ∼= Cpq.
(2) p = q and G ∼= Cp ×Cp.
(3) p | q − 1, G is non-abelian, and G ∼= Cq oCp.

A few things we had to take into consideration:

(a) Implicit: the semidirect product involves a non-trivial homomorphism
Cp → Aut Cq.

(b) Implicit: the choice of this homomorphism does not matter.
(c) Implicit: such a homomorphism exists.
(d) The natural-language statement has the usual form of a classification result. This

may not be user-friendly in Lean.

Rephrasing

We ended up choosing the following main theorems plus some corollaries:

Let p and q be positive prime numbers with p < q.
(i) If G is a non-cyclic group of order p2, then G is isomorphic to

Cp ×Cp.
(ii) If G is a group of order pq and p - q − 1, then G is cyclic.
(iii) If p | q − 1, then there exists a non-cyclic group of order pq.
(iv) If G is a non-cyclic group of order pq and ϕ : Cp → Aut Cq is

any non-trivial homomorphism of groups, then G is isomorphic
to Cq oϕ Cp.

Finiteness and cardinality

“Let G be a finite group of cardinality n.”

1️⃣ (G : Type*) [Group G] [Finite G] (n : ℕ)

(h : Nat.card G = n)

2️⃣ (G : Type*) [Group G] [Fintype G] (n : ℕ)

(h : Fintype.card G = n)

class inductive Finite (α : Sort*) : Prop
| intro {n : ℕ} : α ≃ Fin n → Finite _

class Fintype (α : Type*) where
elems : Finset α
complete : ∀ x : α, x ∈ elems

def Nat.card (α : Type*) : ℕ := ...

def Fintype.card (α : Type*) [Fintype α] : ℕ := ...

Finite vs Fintype

instance Finite.of_fintype (α : Type*) [Fintype α] : Finite α

noncomputable def Fintype.ofFinite (α : Type*) [Finite α] : Fintype α

Fintype is meant to be used for computable definitions and in general requires
more work (without resorting to classical). For example, we initially had to prove
the following.

instance MulEquiv.fintype (α β : Type*) [DecidableEq α] [DecidableEq β]
[Mul α] [Mul β] [Fintype α] [Fintype β] : Fintype (α ≃* β) where

...

instance Fintype.decidableEqMulEquivFintype (α β : Type*)
[DecidableEq β] [Fintype α] [Mul α] [Mul β] : DecidableEq (α ≃* β) :=

fun a b => decidable_of_iff ((a : α → β) = b)
(Injective.eq_iff DFunLike.coe_injective)

Switching from Fintype to Finite

Previously, Lagrange’s Theorem:

theorem Subgroup.card_subgroup_dvd_card
{α : Type u_1} [Group α] (s : Subgroup α) [Fintype α] [Fintype s] :
Fintype.card ↥s ∣ Fintype.card α :=

...

The [Fintype s] is needed unless we use classical .

As of June:

theorem Subgroup.card_subgroup_dvd_card
{α : Type u_1} [Group α] (s : Subgroup α) :
Nat.card ↥s ∣ Nat.card α :=

...

This also covers infinite groups.

Homomorphisms

variable (G₁ G₂ : Type*) [Group G₁] [Group G₂]

The type of group homomorphisms from G₁ to G₂ is MonoidHom G₁ G₂ ,
notation G₁ →* G₂ .

Similarly, MulEquiv G₁ G₂ , notation G₁ ≃* G₂ , is the type of group
isomorphisms (or in fact, semigroup isomorphisms).

An object of type G₁ ≃* G₂ is a concrete isomorphism. When we only care that the
groups are isomorphic, we can write Nonempty (G₁ ≃* G₂) .

How to say a homomorphism φ : G₁ →* G₂ is non-trivial? At first we came up
with φ.ker ≠ ⊤ and φ.range ≠ ⊥ . It turned out we can just write φ ≠ 1 .

Cyclic groups

In Mathlib, ZMod n is the type of integers modulo n for non-zero n and we know
that it is a commutative ring and it is cyclic as a group.

instance ZMod.commRing (n : ℕ) : CommRing (ZMod n)

instance ZMod.instIsAddCyclic (n : ℕ) : IsAddCyclic (ZMod n)

Unfortunately for us, additive notation is used for its group structure. We replace this
with multiplicative notation in a new type:

abbrev MulZMod (n : ℕ) := Multiplicative (ZMod n)

instance isCyclic_multiplicative {α : Type u} [AddGroup α] [IsAddCyclic α] :
IsCyclic (Multiplicative α) :=

...

Stating (iv) in Lean

Let p and q be positive prime numbers with p < q. If G is a non-
cyclic group of order pq and ϕ : Cp → Aut Cq is any non-trivial
homomorphism of groups, then G is isomorphic to Cq oϕ Cp.

variable {p q : ℕ} (hp : p.Prime) (hq : q.Prime) (hpq : p < q)
variable {G : Type*} [Group G] [Finite G]

theorem mulEquiv_semidirectProduct_of_not_isCyclic_of_card
(h : Nat.card G = p * q) (h' : ¬IsCyclic G)
(φ : MulZMod p →* MulAut (MulZMod q)) (hφ : φ ≠ 1) :
Nonempty (G ≃* MulZMod q ⋊[φ] MulZMod p) :=

...

Proof of (iv)
Let p and q be positive prime numbers with p < q. If G is a non-
cyclic group of order pq and ϕ : Cp → Aut Cq is any non-trivial
homomorphism of groups, then G is isomorphic to Cq oϕ Cp.

I Let G be a non-cyclic group of order pq. Let ϕ : Cp →∗Aut Cq be non-trivial.
I By Sylow’s Theorems, there is a subgroup H of order q and a subgroup K of

order p in G; furthermore the number n of subgroups of order q in G is 1mod q.
I The index |G : NG(H)| is also n and divides p by a corollary of Lagrange’s

Theorem. Therefore H is normal in G.
I The set HK = {hk : h ∈ H , k ∈ K} has cardinality |H | |K | / |H ∩ K |. Since H

and K intersect trivially, HK has cardinality pq. Therefore HK is the biggest set
(and hence subgroup) in G.

I K acts on H by conjugation, giving rise to some ψ : K →∗Aut H and some
G '∗ H oψ K .

I Since there are instances of H '∗Cq and K '∗Cp, and ψ is
compatible with ϕ, we obtain some G '∗Cq oϕ Cp by a
congruence lemma for semidirect products.

A key lemma
Aut Cq is isomorphic to Cq−1.
(Hence if p | q−1, then there exists a unique non-trivial homomorphic
image of Cp in Aut Cq; and if p - q − 1, then any Cp →∗Aut Cq is
trivial.)

We laid out many options for a proof assuming Mathlib and chose the one with the
least amount of mathematical content:

variable (p : ℕ) [Fact (p.prime)]

def addEquivAddAutZMod : AddAut (ZMod p) ≃* (ZMod p)ˣ where ...

def mulEquivMulAutMulZMod : MulAut (MulZMod p) ≃* (ZMod p)ˣ :=
AddEquiv.toMultiplicative.mulEquiv.symm.trans <| addEquivAddAutZMod p

lemma mulAut_MulZMod_isCyclic : IsCyclic (MulAut (MulZMod p)) := ...

lemma card_mulAut_mulZMod :
Nat.card (MulAut (MulZMod p)) = p - 1 := ...

Concluding the project

I The code is completely sorry -free at about 1000 lines.
I We have learned a lot about Lean and Mathlib.
I We are in the process of refactoring, generalising our lemmas, and submitting pull

requests to Mathlib in small chunks.
I We feel there is room for more automation, and more documentation and

organisation.
I Many more theorems in group theory and lemmas about finite objects in general

await formalisation. And maybe a computational library?

