### Weakly distance-regular digraphs with *P*-polynomial property

# Qing Zeng

# This is joint work with Yuefeng Yang and Kaishun Wang

Beijing Normal University

2024. 6. 17

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Outline

# Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### Outline

# Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

# Digraph

- A digraph  $\Gamma$  is a pair  $(V(\Gamma), A(\Gamma))$  where  $V(\Gamma)$ is a finite set of vertices and  $A(\Gamma) \subseteq V(\Gamma) \times V(\Gamma)$  is a set of arcs.
- $\Gamma$  is an undirected graph or a graph if  $A(\Gamma)$  is a symmetric relation.

### Path

• A path from u to v:

$$(u=w_0,w_1,\ldots,w_r=v)$$

such that  $(w_{t-1}, w_t)$  is an arc for  $t = 1, 2, \ldots, r$ .

• r is the length of the path (the number of arcs).

### Distance and Diameter

• Distance  $\partial(u, v)$ : the length of a shortest path from u to v.

• If 
$$\partial(u,v) = h$$
, write

$$u \bullet h \to v$$

• The maximum value of distance function is the diameter of  $\Gamma$ .

### Circuit

- The path  $(w_0, w_1, \dots, w_{r-1})$  is a circuit if  $(w_{r-1}, w_0)$  is an arc.
- The girth of Γ is the length of a shortest circuit in Γ.

### Strongly connected

A digraph (resp. graph) Γ is said to be strongly connected (resp. connected) if, for any two vertices x and y, there is a path from x to y.

### Outline

## Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### Association scheme

- X: finite set.
- $R_0, R_1, \ldots, R_d$ : relations, nonempty subset of  $X \times X$ .
- Write  ${}^{t}\!R_{i} = \{(y, x) \mid (x, y) \in R_{i}\}.$
- $\mathfrak{X} = (X, \{R_i\}_{0 \le i \le d})$  is called an association scheme with d classes, if

### Association scheme

(i) 
$$R_0 = \{(x, x) \mid x \in X\};$$
  
(ii)  $R_0, R_1, \dots, R_d$  is a partition of  $X \times X;$   
(iii)  ${}^t\!R_i = R_{i'}$  for some  $i' \in \{0, 1, \dots, d\};$   
(iv) For any  $(x, y) \in R_h,$   
 $p_{i,j}^h = |\{z \in X \mid (x, z) \in R_i, (z, y) \in R_j\}|$ 

depends only on i, j, h. (intersection numbers!)



### Association scheme

- $\mathfrak{X}$  is commutative if  $p_{i,j}^h = p_{j,i}^h, \; \forall \; i,j,h$  .
- $\mathfrak{X}$  is symmetric if each  $R_i$  is symmetric  $(R_i = {}^t\!R_i, \forall i)$  and non-symmetric otherwise.

### Adjacency matrix

• For each  $R_i$ , let  $A_i$  be the binary matrix, whose rows and columns are indexed by the elements of X such that

$$(A_i)_{xy} = 1 \iff (x, y) \in R_i.$$

•  $A_i$  is called *i*th adjacency matrix of  $\mathfrak{X}$ .

### Main topic of AS

- Main topic of AS: Classify all AS.
  BUT AS are too general, it is impossible!
- Which families of AS are important?

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Outline

# Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### P-polynomial scheme

 An association scheme (X, {R<sub>i</sub>}<sub>0≤i≤d</sub>) is
 *P*-polynomial with respect to the ordering
 *R*<sub>0</sub>, R<sub>1</sub>,..., R<sub>d</sub>, if for each *i*, there exists a
 complex coefficient polynomial v<sub>i</sub>(x) of degree *i* such that

$$A_i = v_i(A_1).$$

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Distance-regular graphs

- Let (X, {R<sub>i</sub>}<sub>0≤i≤d</sub>) be a symmetric P-polynomial association scheme with respect to the ordering R<sub>0</sub>, R<sub>1</sub>,..., R<sub>d</sub>. Then (X, R<sub>1</sub>) is a connected graph, called a distance-regular graph.
- In this talk, a graph means a connected graph.

### Definition of DRG

# Definition (Biggs, 70's)

A graph  $\Gamma$  is said to be distance-regular (DRG), if for x, y with  $\partial(x, y) = h$ ,

$$p_{i,j}^h = |\{z \in V\Gamma \mid \partial(x,z) = i, \partial(y,z) = j\}$$

depends only on i, j, h.



Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Remarks

### • Given a DRG of diameter d, let

$$R_i = \{ (x, y) \in X \times X \mid \partial(x, y) = i \}.$$

Then  $(X, \{R_i\}_{0 \le i \le d})$  is a symmetric *P*-polynomial AS with respect to the ordering  $R_0, R_1, \ldots, R_d$ .

• Symmetric P-polynomial AS  $\iff$  DRG.

### Question

- Recall: A symmetric *P*-polynomial AS determines a DRG.
- How about non-symmetric case?

### Outline

# Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### Distance-regular digraphs

- Let (X, {R<sub>i</sub>}<sub>0≤i≤d</sub>) be a non-symmetric P-polynomial AS with respect to the R<sub>0</sub>, R<sub>1</sub>,..., R<sub>d</sub>. The (X, R<sub>1</sub>) is a strongly connected digraph, is called a distance-regular digraph.
- In this talk, a digraph means a strongly connected digraph, not undirected.

### Definition of DRDG

### Definition (Damerell, 1981)

A digraph  $\Gamma$  is said to be distance-regular (DRDG) , if for x,y with  $\partial(x,y)=h,$ 

$$p_{i,j}^h = |\{z \in V\Gamma \mid \partial(x,z) = i, \partial(y,z) = j\}|$$

depends only on i, j, h.



R.M. Damerell, Distance-transitive and distance-regular digraph, J. Combin. Theory Ser.B, 31 (1981), 46–53.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun N Weakly distance-regular digraphs with P-polynomial property

### Remarks

- Note that the unique difference between the definitions of DRDG and DRG: In DRDG, "digraph"; In DRG, "graph".
- Given a DRDG of diameter d, let

$$R_i = \{ (x, y) \mid \partial(x, y) = i \}.$$

Then  $(X, \{R_i\}_{0 \le i \le d})$  be a non-symmetric *P*-polynomial AS.

• Non-symmetric P-polynomial AS  $\iff$  DRDG.

伺 ト イ ヨ ト イ ヨ ト

### Distance-regular digraphs

- In 1981, Damerell proved that the diameter d of DRDG is g-1 (short) or g (long). Moreover, a long DRDG is a coclique extension of a short DRDG.
- In 1993, Leonard and Nomura proved that except directed cycles all short DRDG have  $d = g 1 \le 7$ .
- Since then, there has been very little progress. In fact, there are very few examples of DRDG.
- R.M. Damerell, Distance-transitive and distance-regular digraph, J. Combin. Theory Ser.B, 31 (1981), 46–53.
- D.A. Leonard and K. Nomura, the girth of a directed distance-regular graph, J. Combin. Theory Ser. B 58 (1993), 34–39.

### Directed version

# A natural directed version of DRG with unbounded girth.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Outline

# Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### Two way distance

- In a graph,  $\partial(x,y) = \partial(y,x)$ .
- In a digraph, it does not hold. In order to describe the distance between two vertices x and y in a digraph:
- Two way distance  $\tilde{\partial}(x,y) = (\partial(x,y), \partial(y,x)).$

### Two way distance

- $\tilde{\partial}(\Gamma)$ : the set of all pairs  $\tilde{\partial}(x,y)$ .
- $\Gamma_{\tilde{i}}$ : the set of ordered pairs (x, y) with  $\tilde{\partial}(x, y) = \tilde{i}$ , where  $\tilde{i} \in \tilde{\partial}(\Gamma)$ .

### Wdrdg

### Definition (Wang and Suzuki, 2003)

A digraph  $\Gamma$  is said to be weakly distance-regular (wdrdg) if, for any  $\tilde{\partial}(x,y)=\tilde{h},$ 

$$p^{\tilde{h}}_{\tilde{i},\tilde{j}} = |\{z \in V\Gamma \mid \tilde{\partial}(x,z) = \tilde{i} \text{ and } \tilde{\partial}(z,y) = \tilde{j}\}|$$

depends only on  $\tilde{i}, \tilde{j}, \tilde{h}$ .



K. Wang and H. Suzuki, Weakly distance-regular digraphs, Discrete Math. 264 (2003) 225-236.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### The attached scheme

•  $\mathfrak{X}(\Gamma) = (V\Gamma, \{\Gamma_{\tilde{i}}\}_{\tilde{i} \in \tilde{\partial}(\Gamma)})$  is an association scheme. We call  $\mathfrak{X}(\Gamma)$  the attached scheme of  $\Gamma$ .

• 
$$p_{\tilde{i},\tilde{j}}^{\tilde{h}}$$
: intersection number.

 $\bullet\ \Gamma$  is commutative if the attached scheme is commutative.

### Outline

### Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- 2 Development on wdrdgs
- Our works
  - *P*-polynomial case
  - Underlying graphs are Hamming graphs or related graphs
  - Underlying graphs are Johnson graphs or related graphs

### Development of wdrdgs

- Small valency.
- Small intersection numbers.
- Large intersection numbers.
- Circulant case.
- Locally semicomplete case.

### Small valency: Valency 2

### Theorem (Wang and Suzuki 2003)

A commutative wdrdg of valency 2 is isomorphic to one of the following Cayley digraphs:

- (1) Cay( $\mathbb{Z}_3^2$ , {(0, 1), (1, 0)}).
- (2) Cay( $\mathbb{Z}_{2n}, \{1, 2\}$ ).
- (3)  $\operatorname{Cay}(\mathbb{Z}_{2n}, \{1, n+1\}).$
- (4) Cay $(\mathbb{Z}_2 \times \mathbb{Z}_n, \{(0,1), (1,0)\}).$

In 2004, Suzuki proved the nonexistence of noncommutative 2-valent wdrdgs.

K. Wang and H. Suzuki, Weakly distance-regular digraphs, Discrete Math. 264 (2003) 225-236.

H. Suzuki, Thin weakly distance-regular digraphs, J. Combin. Theory Ser. B 92 (2004), 69-83.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Small valency: Valency 3

- In 2004, Wang classified wdrdg of valency 3 and girth 2.
- Suzuki, Yang, Lv and Wang classified commutative wdrdg of valency 3 and girth more than 2.
- H. Suzuki, Thin weakly distance-regular digraphs, J. Combin. Theory Ser. B 92 (2004), 69-83.
- K. Wang, Commutative weakly distance-regular digraphs of girth 2, Europ. J. Combin., 25(2004), 363-375.
- Y. Yang, B. Lv and K. Wang, Weakly distance-regular digraphs of valency three, I, Electron. J. Combin., 23(2) (2016) Paper 2.12.
- Y. Yang, B. Lv and K. Wang, Weakly distance-regular digraphs of valency three,
  - II, J. Combin. Theory Ser. A, 160 (2018) 288-315.

### Small intersection numbers: thin

A wdrdg is thin if all the intersection numbers are at most 1.

# Theorem (Suzuki 2004)

A thin wdrdg is isomorphic to one of the following Cayley digraphs:

- (1)  $Cay(\mathbb{Z}_n, \{1\}).$
- (2) Cay( $\mathbb{Z}_{2n}, \{1, 2\}$ ).
- (3) Cay( $\mathbb{Z}_2 \times \mathbb{Z}_n, \{(1,0), (0,1)\}$ ).
- (4) Cay( $\mathbb{Z}_2 \times \mathbb{Z}_{2n}, \{(1,0), (0,1), (0,2)\}$ ).
- H. Suzuki, Thin weakly distance-regular digraphs, J. Combin. Theory Ser.
   B 92 (2004), 69-83.

Introduction Development on wdrdgs Our works

### Small intersection numbers: quasi-thin

# A wdrdg is said to be quasi-thin if the maximum value of all intersection numbers is 2.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Small intersection numbers: quasi-thin

### Theorem (Yang, Lv and Wang, 2020)

If  $\Gamma$  is a commutative quasi-thin wdrdg of valency more than 3 and vertices more than 16, then  $\Gamma$  is isomorphic to:

- (1) Cay( $\mathbb{Z}_{4p}, \{1, 2, 2p+i, 2p+1, 2p+2\}$ ),  $p \neq 2-i$ .
- (2) Cay( $\mathbb{Z}_q \times \mathbb{Z}_4, \{(0,1), (1,0), (1,2), (0,2+i)\}$ ),  $q \neq 3+i$ .
- (3) Cay( $\mathbb{Z}_{2q} \times \mathbb{Z}_2, \{(0,1), (1,0), (2,0), (1,1)\}$ ).
- (4)  $\operatorname{Cay}(\mathbb{Z}_{4q} \times \mathbb{Z}_2, \{(0,1), (1,0), (2,0), (2q+1,0), (2q+2,0), (2qi,1)\}), q \notin \{3,3+i\}.$
- (5) Cay( $\mathbb{Z}_{2q} \times \mathbb{Z}_4$ , {(0,1), (1,0), (1,2), (0,2-i), (2,0), (2,2)}),  $q \notin \{3,3+i\}.$
- (6) Cay( $\mathbb{Z}_{2q} \times \mathbb{Z}_n, \{(0,1), (1,0), (2,0), (0,-1)\}$ ).
- (7) Cay( $\mathbb{Z}_{2q} \times \mathbb{Z}_n, \{(0,1), (1, (c+1)/2), (1, (c-1)/2), (2, c), (0, -1)\}\}$ ).
- (8)  $\operatorname{Cay}(\mathbb{Z}_{2n} \times \mathbb{Z}_q, \{(0,1), (1, (t+1)/2), (-1, (1-t)/2), (2,t), (-2, -t)\}).$ Here,  $i \in \{0, 1\}, 2 \le p, 3 \le q, 3 \le n \le q - (1 + (-1)^q)/2, c = n/\operatorname{gcd}(q, n), t = q/\operatorname{gcd}(q, n) \text{ and } c, t \text{ are both odd.}$

 Y. Yang, B. Lv and K. Wang, Quasi-thin weakly distance-regular digraphs, J. 
 Image: Comparison of the second second

Introduction Development on wdrdgs Our works

### Large intersection numbers: thick

• A wdrdg is said to be thick if the two families of intersection numbers

$$p_{(i_1,i_2),(i_1,i_2)}^{(h_1,h_2)}, p_{(i_1,i_2),(i_2,i_1)}^{(h_1,h_2)}$$

are zero, or reach the maximum.

### Thick, reduced theorem

### Theorem (Yang and Wang, 2022)

Let  $\Gamma$  be a communicate thick wdrdg. Then there exsits a subdigraph  $\Delta$  (thick wdrdg) s.t.  $\Gamma/\Delta$  is isomorphic to thick wdrdgs:

- (1)  $Cay(\mathbb{Z}_p, \{1\});$
- (2)  $\operatorname{Cay}(\mathbb{Z}_p, \{1\})[\overline{K}_2];$
- (3)  $Cay(\mathbb{Z}_{2q-2}, \{1, 2\});$
- (4) Cay $(\mathbb{Z}_{2q-2}, \{1, 2\})[\overline{K}_2];$
- (5) Cay( $\mathbb{Z}_{\gamma} \times \mathbb{Z}_{\eta}, \{(2^{\alpha} + \beta, 1), (2^{\alpha} \beta, \alpha), (2^{\alpha+1}, \alpha+1)\});$
- (6) Cay $(\mathbb{Z}_{\gamma} \times \mathbb{Z}_{\eta}, \{(2^{\alpha} + \beta, 1), (2^{\alpha} \beta, \alpha), (2^{\alpha+1}, \alpha+1)\})[\overline{K}_2].$

Here,  $q, p, \alpha, \beta, \gamma, \eta$ .....

Y. Yang and K. Wang, Thick weakly distance-regular digraphs, Graphs Combin., 38 (2022) Paper No. 37.

- 4 同 1 4 目 1 4 目 1 9 9 9 9 9

### Circulant case

A circulant is a Cayley digraph of a cyclic group.

### Theorem (Munemasa, W, Yang, Zhu, 2024<sup>+</sup>)

A weakly distance-regular circulant with one type of arcs is isomorphic to

- (1)  $C_l[\overline{K}_m]$ ;
- (2)  $P(q)[\overline{K}_m];$
- (3)  $C_3 \times K_h$ ;
- (4) Cay( $\mathbb{Z}_{13}, \{1, 3, 9\}$ )[ $\overline{K}_m$ ].

Here, P(q) is the Paley tournament of order prime q,  $q \equiv 3 \pmod{4}$ ,  $m \ge 1$ ,  $l \ge 3$ , h, q > 3,  $3 \nmid h$ .



A. Munemasa, K. Wang, Y. Yang and W. Zhu, Weakly distance-regular circulants, I, arXiv:2307.12710.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Locally semicomplete case

- A digraph Γ is semicomplete, if for any pair of vertices x, y ∈ V(Γ), either (x, y) ∈ A(Γ), or (y, x) ∈ A(Γ), or both.
- A digraph Γ is locally semicomplete, if Γ[N<sup>+</sup>(x)] and Γ[N<sup>-</sup>(x)] are both semicomplete for every vertex x of Γ.

### Locally semicomplete case

### Theorem (Yang, Li and Wang, $2024^+$ )

Let  $\Gamma$  be a commutative weakly distance-regular digraph of valency more than 3. Then  $\Gamma$  is locally semicomplete but not semicomplete if and only if  $\Gamma$  is isomorphic to one of the following digraphs:

(1) 
$$\Lambda \circ K_m$$
;

(2) Cay(
$$\mathbb{Z}_6, \{1, 2\}$$
)  $\circ K_n$ ;

(3) 
$$\operatorname{Cay}(\mathbb{Z}_{iq}, \{1, i\}) \circ (\Sigma_x)_{x \in \mathbb{Z}_{iq}}.$$

Here,  $m \geq 1$ ,  $n \geq 2$ ,  $q \geq 4$ ,  $i \in \{1,2\}$ ,  $(\Sigma_x)_{x \in \mathbb{Z}_{iq}}$  are semicomplete weakly distance-regular digraphs with  $p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Sigma_0) = p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Sigma_x)$  for each x and  $\tilde{i}, \tilde{j}, \tilde{h}$ , and  $\Lambda$  is a doubly regular (k + 1, 2)-team tournament of type II for a positive integer k with  $k \equiv 3 \pmod{4}$ .

Y. Yang, S. Li and K. Wang, Locally semicomplete weakly distance-regular digraphs, arXiv: 2405.03310.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property

### Outline

### Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs

- *P*-polynomial case
- Underlying graphs are Hamming graphs or related graphs
- Underlying graphs are Johnson graphs or related graphs

- *P*-polynomial case.
- Underlying graphs are Hamming graphs or related graphs.
- Underlying graphs are Johnson graphs or related graphs.

### Outline

### Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs

- P-polynomial case
- Underlying graphs are Hamming graphs or related graphs
- Underlying graphs are Johnson graphs or related graphs

### *P*-polynomial case

A wdrdg is *P*-polynomial if its attached scheme is *P*-polynomial.

#### Theorem (Z., Yang and Wang, 2023)

Let  $\Gamma$  be a wdrdg whose attached scheme  $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$  is *P*-polynomial with respect to the ordering  $R_0, R_1, \ldots, R_d$ . Then  $\Gamma$  is isomorphic to one of the following digraphs:

(i) 
$$(X, R_1)$$
 or  $(X, R_{g-1})$ ;

(ii) 
$$(X, R_2)$$
 or  $(X, R_{g-2})$ ,  $k_1 > k_g + 1$ ,  $g \in \{6, 8\}$ ;

(iii) 
$$(X, R_1 \cup R_2)$$
 or  $(X, R_{g-2} \cup R_{g-1}), 2 \mid g;$ 

(iv) 
$$(X, R_1 \cup R_g)$$
 or  $(X, R_{g-1} \cup R_g)$ ,  $d = g$ ;

(v)  $(X, R_2 \cup R_g)$  or  $(X, R_{g-2} \cup R_g)$ ,  $k_1 > k_g + 1$ , d = g and  $g \in \{6, 8\}$ ;

(vi) 
$$(X, R_1 \cup R_2 \cup R_g)$$
 or  $(X, R_{g-2} \cup R_{g-1} \cup R_g)$ ,  $d = g, 2 \mid g$  and  $g > 4$ .

Here,  $k_i$  is the valency of the relation  $R_i$  for  $i \in \{1, g\}$  and g is the girth of  $(X, R_1)$ .

Q. Zeng, Y. Yang and K. Wang, *P*-polynomial weakly distance-regular digraphs, Electron. J. Combin., 30(3) (2023) Paper 3.3.

### Outline

### Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs

- *P*-polynomial case
- Underlying graphs are Hamming graphs or related graphs
- Underlying graphs are Johnson graphs or related graphs

### Underlying graph is a DRG

Wang and Suzuki proposed a question when an orientation of a distance-regular graph defines a weakly distance-regular digraph.

K. Wang and H. Suzuki, Weakly distance-regular digraphs, Discrete Math. 264 (2003) 225–236.

For a digraph  $\Gamma$ , we form the underlying graph of  $\Gamma$ with the same vertex set, and there is an edge between vertices x, y whenever (x, y) or  $(y, x) \in A(\Gamma)$ .

### Underlying graph is a complete graph

- A digraph is semicomplete if its underlying graph is a complete graph.
- A semicomplete wdrdg has diameter 2 and girth  $g \leq 3$ .
- 2-class non-symmetric AS ⇐⇒ semicomplete wdrdg of girth 3.
- 3-class non-symmetric AS ⇐⇒ semicomplete wdrdg of girth 2.

Introduction Development on wdrdgs Our works

*P*-polynomial case Underlying graphs are

### Hamming graph and Cartesian product

- Hamming graph H(d, q)
   Vertex set X := F<sup>d</sup>, where |F| = q.
   x ~ y iff x and y differ in 1 position.
   Hamming graphs also can be viewed as Cartesian products of complete graphs.
- For the digraphs  $\Gamma$  and  $\Sigma$ , the Cartesian product  $\Gamma \Box \Sigma$  is the digraph with the vertex set  $V(\Gamma) \times V(\Sigma)$  such that ((u, v), (u', v')) is an arc if and only if u = u' and  $(v, v') \in A(\Sigma)$ , or  $(u, u') \in A(\Gamma)$  and v = v'.

### Folded *n*-cube, Shrikhande graph and Doob graph

• Folded *n*-cube  $\Box_n$ 

The graph H(n-1,2) with a perfect matching introduced between antipodal vertices, where two vertices are called the antipodal vertices if they differ in all coordinates.

• Shrikhande graph

 $Cay(\mathbb{Z}_4 \times \mathbb{Z}_4, \{(\pm 1, 0), (0, \pm 1), \pm (1, 1)\}).$ 

• Doob graph  $G(d_1, d_2)$ 

The Cartesian product of  $H(d_2, 4)$  with  $d_1$  copies of the Shrikhande graph.

### Induced subdigraph

- $\Gamma$  is a commutative wdrdg with vertex set  $S^d$ .
- For each  $i \in \{1, 2, \ldots, d\}$  and  $a_j \in S$  with  $1 \leq j \leq d-1$ , denote  $\Gamma_i(a_1, a_2, \ldots, a_{d-1})$  be the induced subdigraph of  $\Gamma$  on the set

$$\{(a_1, a_2, \dots, a_{i-1}, b, a_i, a_{i+1}, \dots, a_{d-1}) \mid b \in S\}.$$

• An arc (x,y) of  $\Gamma$  is of type (1,r) if  $\partial(y,x) = r$ .

### Proposition (Yang, Z. and Wang, 2024)

Let q = 2. If  $\Sigma$  is distance-transitive, then  $p_{(2,2),(3,1)}^{(1,3)} \neq 0$  and each arc of  $\Gamma$  is of type (1,1) or (1,3). In particular,  $k_{1,1} = 0$  or 1.

Y. Yang, Q. Zeng and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, I, J. Algebraic Combin., (2024). https://doi.org/10.1007/s10801-024-01312-3

Qing Zeng This is joint work with Yuefeng Yang and Kaishun N Weakly distance-regular digraphs with P-polynomial property

### Underlying graph is a Hamming graph

### Theorem (Yang, Z. and Wang, 2024)

Let  $\Gamma$  be a commutative wdrdg. Then  $\Gamma$  has a Hamming graph H(d,q) as its underlying graph if and only if  $\Gamma$  is isomorphic to one of the following digraphs:

- (1)  $Cay(\mathbb{Z}_4, \{1\});$
- (2)  $\operatorname{Cay}(\mathbb{Z}_4 \times \mathbb{Z}_2, \{(1,0), (0,1)\});$
- (3)  $\Delta^1$ ;
- (4)  $\Delta^1 \Box \Delta^2$ ;
- (5)  $\Gamma^1 \Box \Gamma^2 \Box \cdots \Box \Gamma^d$ .

Here,  $d \geq 1$ , and  $(\Delta^i)_{i \in \{1,2\}}$  (resp.  $(\Gamma^i)_{i \in \{1,2,\dots,d\}}$ ) are semicomplete weakly distance-regular digraphs of diameter 2 and girth 2 (resp. 3) with  $p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Delta^1) = p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Delta^2)$  (resp.  $p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Gamma^1) = p_{\tilde{i},\tilde{j}}^{\tilde{h}}(\Gamma^l)$ ) for each l and  $\tilde{h}, \tilde{i}, \tilde{j}$ .

 Y. Yang, Q. Zeng and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, I, J. Algebraic Combin.; (2024). Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with *P*-polynomial property

### Underlying graph is a Doob graph or folded *n*-cube

### Theorem (Yang, Z. and Wang, 2024)

Let  $\Gamma$  be a commutative wdrdg. Then  $\Gamma$  has a folded *n*-cube as its underlying graph if and only if  $\Gamma$  is isomorphic to  $Cay(\mathbb{Z}_4, \{1, 2\}).$ 

### Theorem (Yang, Z. and Wang, 2024)

Let  $\Gamma$  be a commutative wdrdg. Then  $\Gamma$  has a Doob graph  $G(d_1, d_2)$  as its underlying graph if and only if  $\Gamma$  is isomorphic to  $Cay(\mathbb{Z}_4 \times \mathbb{Z}_4, \{(1, 0), (0, 1), (-1, -1)\}).$ 

Y. Yang, Q. Zeng and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, I, J. Algebraic Combin., (2024). https://doi.org/10.1007/s10801-024-01312-3

### Outline

### Introduction

- Digraph
- Association scheme
- Distance-regular graphs
- Distance-regular digraph
- Weakly distance-regular digraphs
- Development on wdrdgs

- *P*-polynomial case
- Underlying graphs are Hamming graphs or related graphs
- Underlying graphs are Johnson graphs or related graphs

### Johnson graph and folded Johnson graph

 Johnson graph J(n, e)
 Vertex set X: the set of all e-subsets of an n-set.

$$x \sim y$$
 iff  $|x \cap y| = e - 1$ .

• folded Johnson graph  $\bar{J}(2m,m)$ 

Vertex set X: the set of partitions of a 2m-set into two m-sets.

Two partitions being adjacent whenever their common refinement is a partition of X into four sets of sizes 1, m - 1, 1, m - 1.

### The type of arcs

•  $\Gamma$  is a commutative wdrdg whose underlying graph is  $\Sigma$ , where  $\Sigma$  is a Johnson graph J(n,e)  $(n \ge 2e \text{ and } e \ge 2)$  or a folded Johnson graph  $\overline{J}(2m,m)$   $(m \ge 4)$ .

• 
$$T = \{q \mid (1, q - 1) \in \tilde{\partial}(\Gamma)\}.$$

Proposition (Z., Yang and Wang, 
$$2024^+$$
)  
Let  $q \in T$ . If  $p_{(1,q-1),(1,h-1)}^{(1,q-2)} = 0$  for all  $h \ge 2$ , then  $q \le 4$ .

 $\mathsf{Q}.$  Zeng, Y. Yang and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, II, in preparation.

(同) (日) (日) 日

# |T| > 1 or |T| = 1

Proposition (Z., Yang and Wang,  $2024^+$ ) Suppose |T| > 1. Then  $\Sigma = J(4, 2)$  and  $\Gamma$  is isomorphic to  $Cay(\mathbb{Z}_6, \{1, 2\})$ .

Proposition (Z., Yang and Wang,  $2024^+$ ) Suppose |T| = 1. Then  $\Sigma = J(4, 2)$  and  $\Gamma$  is isomorphic to  $Cay(\mathbb{Z}_6, \{1, 4\})$ .

Q. Zeng, Y. Yang and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, II, in preparation.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Underlying graph is a Johnson graph or folded Johnson graph

### Theorem (Z., Yang and Wang, $2024^+$ )

Let  $\Gamma$  be a commutative wdrdg and  $\Sigma$  a Johnson graph J(n, e)with  $n \ge 2e$  and  $e \ge 2$ . Then  $\Gamma$  has  $\Sigma$  as its underlying graph if and only if  $\Gamma$  is isomorphic to  $\operatorname{Cay}(\mathbb{Z}_6, \{1, 2\})$  or  $\operatorname{Cay}(\mathbb{Z}_6, \{1, 4\})$ .

### Theorem (Z., Yang and Wang, $2024^+$ )

Let  $\Gamma$  be a commutative wdrdg and  $\Sigma$  a folded Johnson graph  $\overline{J}(2m,m)$ . Then  $\Gamma$  dose not have  $\Sigma$  as its underlying graph if  $m \geq 4$ .

 ${\sf Q}.$  Zeng, Y. Yang and K. Wang, Weakly distance-regular digraphs whose underlying graphs are distance-regular, II, in preparation.

### Further work

- Classify commutative wdrdgs whose underlying graphs are some other distance-regular graphs.
- Classify wdrdgs whose underlying graphs are Hamming graphs or Johnson graphs.
- Consider wdrdgs whose attached association schemes are Q-polynomial.
- Classify weakly distance-regular dihedrants.

# Thank you for your attention.

Qing Zeng This is joint work with Yuefeng Yang and Kaishun W Weakly distance-regular digraphs with P-polynomial property