The base size of the symmetric group

Coen del Valle Joint work with Colva Roney-Dougal

22 May 2024

G-congruences

Let G be a group acting faithfully on a set Ω.

G-congruences

Let G be a group acting faithfully on a set Ω. An equivalence relation, \sim, is called a G-congruence if for every $g \in G$ and every $\alpha, \beta \in \Omega$,

G-congruences

Let G be a group acting faithfully on a set Ω. An equivalence relation, \sim, is called a G-congruence if for every $g \in G$ and every $\alpha, \beta \in \Omega$,

$$
\alpha^{g} \sim \beta^{g} \Leftrightarrow \alpha \sim \beta .
$$

G-congruences

Let G be a group acting faithfully on a set Ω. An equivalence relation, \sim, is called a G-congruence if for every $g \in G$ and every $\alpha, \beta \in \Omega$,

$$
\alpha^{g} \sim \beta^{g} \Leftrightarrow \alpha \sim \beta .
$$

We call (the action of) G primitive if

G-congruences

Let G be a group acting faithfully on a set Ω. An equivalence relation, \sim, is called a G-congruence if for every $g \in G$ and every $\alpha, \beta \in \Omega$,

$$
\alpha^{g} \sim \beta^{g} \Leftrightarrow \alpha \sim \beta .
$$

We call (the action of) G primitive if

- G is transitive; and

G-congruences

Let G be a group acting faithfully on a set Ω. An equivalence relation, \sim, is called a G-congruence if for every $g \in G$ and every $\alpha, \beta \in \Omega$,

$$
\alpha^{g} \sim \beta^{g} \Leftrightarrow \alpha \sim \beta
$$

We call (the action of) G primitive if

- G is transitive; and
- G admits no nontrivial G-congruences.

Examples

- The symmetric group S_{n} acting on $[n]:=\{1,2, \ldots, n\}$.

Examples

- The symmetric group S_{n} acting on $[n]:=\{1,2, \ldots, n\}$.
- Any k-transitive group, $k \geq 2$.

Examples

- The symmetric group S_{n} acting on $[n]:=\{1,2, \ldots, n\}$.
- Any k-transitive group, $k \geq 2$.
- The symmetric group S_{n} acting on the set of r-subsets of [n], $n>2 r$.

Examples

- The symmetric group S_{n} acting on $[n]:=\{1,2, \ldots, n\}$.
- Any k-transitive group, $k \geq 2$.
- The symmetric group S_{n} acting on the set of r-subsets of [n], $n>2 r$.
- The projective general linear group $\mathrm{PGL}_{d}(q)$ acting on m-dimensional subspaces of $\operatorname{GF}(q)^{d}, d>2 m$.

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

Theorem: Up to equivalence, the primitive actions of $G \in\left\{S_{n}, A_{n}\right\}$ are the actions on:
(i) r-subsets of $[n], n>2 r$;

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

Theorem: Up to equivalence, the primitive actions of $G \in\left\{S_{n}, A_{n}\right\}$ are the actions on:
(i) r-subsets of $[n], n>2 r$;
(ii) partitions of $[n]$ into k parts each of size $/(n=k l)$;

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

Theorem: Up to equivalence, the primitive actions of $G \in\left\{S_{n}, A_{n}\right\}$ are the actions on:
(i) r-subsets of $[n], n>2 r$;
(ii) partitions of $[n]$ into k parts each of size $/(n=k l)$;
(iii) subspaces of a vector space (when G is isomorphic to an almost simple classical group); and

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

Theorem: Up to equivalence, the primitive actions of $G \in\left\{S_{n}, A_{n}\right\}$ are the actions on:
(i) r-subsets of $[n], n>2 r$;
(ii) partitions of $[n]$ into k parts each of size $/(n=k l)$;
(iii) subspaces of a vector space (when G is isomorphic to an almost simple classical group); and
(iv) something else (known precisely).

The O'Nan-Scott theorem

The O'Nan-Scott theorem classifies all primitive permutation groups; we summarise a condensed version for the actions of S_{n} and A_{n}.

Theorem: Up to equivalence, the primitive actions of $G \in\left\{S_{n}, A_{n}\right\}$ are the actions on:
(i) r-subsets of $[n], n>2 r$;
(ii) partitions of $[n]$ into k parts each of size $/(n=k l)$;
(iii) subspaces of a vector space (when G is isomorphic to an almost simple classical group); and
(iv) something else (known precisely).
(i)-(iii) are called standard actions, and (iv) non-standard.

A computational problem

Let G be a permutation group acting faithfully on an n-set Ω.

A computational problem

Let G be a permutation group acting faithfully on an n-set Ω.

Problem: How can we store each permutation $g \in G$?

A computational problem

Let G be a permutation group acting faithfully on an n-set Ω.

Problem: How can we store each permutation $g \in G$?
Naïve approach: Store g as the n-tuple ($\alpha^{g}: \alpha \in \Omega$).

A computational problem

Let G be a permutation group acting faithfully on an n-set Ω.

Problem: How can we store each permutation $g \in G$?
Naïve approach: Store g as the n-tuple ($\alpha^{g}: \alpha \in \Omega$).

As the degree gets large, so does the length of these tuples (linearly), but much of their information is redundant.

Bases

We call a subset $\mathcal{B}=\left\{\beta_{i}: 1 \leq i \leq k\right\} \subseteq \Omega$, a base if

Bases

We call a subset $\mathcal{B}=\left\{\beta_{i}: 1 \leq i \leq k\right\} \subseteq \Omega$, a base if

$$
G_{(\mathcal{B})}:=\left\{g \in G: \beta_{i}^{g}=\beta_{i}, 1 \leq i \leq k\right\}=1 .
$$

Bases

We call a subset $\mathcal{B}=\left\{\beta_{i}: 1 \leq i \leq k\right\} \subseteq \Omega$, a base if

$$
G_{(\mathcal{B})}:=\left\{g \in G: \beta_{i}^{g}=\beta_{i}, 1 \leq i \leq k\right\}=1 .
$$

If permutations g and h agree on \mathcal{B}, then $g h^{-1} \in G_{(\mathcal{B})}=1$, so $g=h$. That is, each permutation is uniquely determined by $\left(\beta_{i}^{g}\right)_{i \leq k}$.

Bases

We call a subset $\mathcal{B}=\left\{\beta_{i}: 1 \leq i \leq k\right\} \subseteq \Omega$, a base if

$$
G_{(\mathcal{B})}:=\left\{g \in G: \beta_{i}^{g}=\beta_{i}, 1 \leq i \leq k\right\}=1 .
$$

If permutations g and h agree on \mathcal{B}, then $g h^{-1} \in G_{(\mathcal{B})}=1$, so $g=h$. That is, each permutation is uniquely determined by $\left(\beta_{i}^{g}\right)_{i \leq k}$.

We can store g as a tuple of (probably) much shorter length; call the minimum size of a base for G the base size of G, denoted $b(G)$.

Examples and bounds

- Any $(n-1)$ set is a base for S_{n} acting on [n], but any set of size less than $n-1$ has a stabiliser containing a transposition hence cannot be a base. Thus $b(G)=n-1$.

Examples and bounds

- Any $(n-1)$ set is a base for S_{n} acting on [n], but any set of size less than $n-1$ has a stabiliser containing a transposition hence cannot be a base. Thus $b(G)=n-1$.
- Let $e_{1}, e_{2}, \ldots, e_{d}$ be a basis for $G F(q)^{d}$. Then $\left\{\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle, \ldots,\left\langle e_{d}\right\rangle,\left\langle e_{1}+e_{2}+\cdots+e_{d}\right\rangle\right\}$ is a base of size $d+1$ for $\mathrm{PGL}_{d}(q)$ acting on 1 -spaces.

Examples and bounds

- Any $(n-1)$ set is a base for S_{n} acting on [n], but any set of size less than $n-1$ has a stabiliser containing a transposition hence cannot be a base. Thus $b(G)=n-1$.
- Let $e_{1}, e_{2}, \ldots, e_{d}$ be a basis for $G F(q)^{d}$. Then $\left\{\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle, \ldots,\left\langle e_{d}\right\rangle,\left\langle e_{1}+e_{2}+\cdots+e_{d}\right\rangle\right\}$ is a base of size $d+1$ for $\mathrm{PGL}_{d}(q)$ acting on 1 -spaces.
- For any permutation group G of degree n, $(\log |G|) /(\log n) \leq b(G) \leq \log |G|$.

Base size of S_{n} and A_{n}

Theorem: (Burness+Guralnick+Saxl, 2011) All non-standard actions of S_{n} and A_{n} have base size 2 or 3 , and actions of type (iii) (there are finitely many of these) have base size at most 5 .

Base size of S_{n} and A_{n}

Theorem: (Burness+Guralnick+Saxl, 2011) All non-standard actions of S_{n} and A_{n} have base size 2 or 3 , and actions of type (iii) (there are finitely many of these) have base size at most 5 .

Theorem: (Morris+Spiga, 2021) Let $k \geq 2, I \geq 2$ and let $S_{k \times I}$ denote $S_{k l}$ acting on partitions of $[k /]$ into k parts of size l then

Base size of S_{n} and A_{n}

Theorem: (Burness+Guralnick+Saxl, 2011) All non-standard actions of S_{n} and A_{n} have base size 2 or 3 , and actions of type (iii) (there are finitely many of these) have base size at most 5 .

Theorem: (Morris+Spiga, 2021) Let $k \geq 2, I \geq 2$ and let $S_{k \times I}$ denote $S_{k l}$ acting on partitions of $[k /]$ into k parts of size l then

1. $b\left(\mathrm{~S}_{2 \times 2}\right)$ is undefined, $b\left(\mathrm{~S}_{3 \times 2}\right)=4$ and $b\left(\mathrm{~S}_{k \times 2}\right)=3$ for $k \geq 4$;
2. $b\left(\mathrm{~S}_{2 \times 4}\right)=5, b\left(\mathrm{~S}_{2 \times 1}\right)=\left\lceil\log _{2}(I+3)\right\rceil+1$ for $I \notin\{2,4\}$;
3. $b\left(\mathrm{~S}_{6 \times 3}\right)=b\left(\mathrm{~S}_{7 \times 3}\right)=b\left(\mathrm{~S}_{7 \times 4}\right)=3, b\left(\mathrm{~S}_{3 \times 7}\right)=4$, and $b\left(\mathrm{~S}_{(I+2) \times I}\right)=3$ for $I \geq 3$; and
4. $b\left(\mathrm{~S}_{k \times 1}\right)=\left\lceil\log _{k}(I+2)\right\rceil+1$ otherwise.

Base size of S_{n} and A_{n}

Theorem: (Burness+Guralnick+Saxl, 2011) All non-standard actions of S_{n} and A_{n} have base size 2 or 3 , and actions of type (iii) (there are finitely many of these) have base size at most 5 .

Theorem: (Morris+Spiga, 2021) Let $k \geq 2, I \geq 2$ and let $S_{k \times I}$ denote $S_{k l}$ acting on partitions of $[k /]$ into k parts of size l then

1. $b\left(\mathrm{~S}_{2 \times 2}\right)$ is undefined, $b\left(\mathrm{~S}_{3 \times 2}\right)=4$ and $b\left(\mathrm{~S}_{k \times 2}\right)=3$ for $k \geq 4$;
2. $b\left(\mathrm{~S}_{2 \times 4}\right)=5, b\left(\mathrm{~S}_{2 \times 1}\right)=\left\lceil\log _{2}(I+3)\right\rceil+1$ for $I \notin\{2,4\}$;
3. $b\left(\mathrm{~S}_{6 \times 3}\right)=b\left(\mathrm{~S}_{7 \times 3}\right)=b\left(\mathrm{~S}_{7 \times 4}\right)=3, b\left(\mathrm{~S}_{3 \times 7}\right)=4$, and $b\left(\mathrm{~S}_{(I+2) \times I}\right)=3$ for $I \geq 3$; and
4. $b\left(\mathrm{~S}_{k \times 1}\right)=\left\lceil\log _{k}(I+2)\right\rceil+1$ otherwise.

They show a similar result for A_{n} — remains to consider r-subsets.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

The determining number $\operatorname{Det}(\Gamma)$, of a graph $\Gamma=(V, E)$ is the minimum cardinality of a set $S \subseteq V$ such that $\operatorname{Aut}(\Gamma)_{(S)}=1$.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

The determining number $\operatorname{Det}(\Gamma)$, of a graph $\Gamma=(V, E)$ is the minimum cardinality of a set $S \subseteq V$ such that $\operatorname{Aut}(\Gamma)_{(S)}=1$. Given positive integers $n \geq 2 r$, the Kneser graph, $K_{n: r}$, has vertex set $V=\{A \subseteq[n]:|A|=r\}$, where sets are adjacent if and only if they are disjoint.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

The determining number $\operatorname{Det}(\Gamma)$, of a graph $\Gamma=(V, E)$ is the minimum cardinality of a set $S \subseteq V$ such that $\operatorname{Aut}(\Gamma)_{(S)}=1$. Given positive integers $n \geq 2 r$, the Kneser graph, $K_{n: r}$, has vertex set $V=\{A \subseteq[n]:|A|=r\}$, where sets are adjacent if and only if they are disjoint. Hence, $\operatorname{Det}\left(K_{n: r}\right)=b\left(\mathrm{~S}_{n, r}\right)$.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

The determining number $\operatorname{Det}(\Gamma)$, of a graph $\Gamma=(V, E)$ is the minimum cardinality of a set $S \subseteq V$ such that $\operatorname{Aut}(\Gamma)_{(S)}=1$. Given positive integers $n \geq 2 r$, the Kneser graph, $K_{n: r}$, has vertex set $V=\{A \subseteq[n]:|A|=r\}$, where sets are adjacent if and only if they are disjoint. Hence, $\operatorname{Det}\left(K_{n: r}\right)=b\left(\mathrm{~S}_{n, r}\right)$.

Theorem: (Halasi, 2012) If $n \geq\left(r^{2}+r\right) / 2$, then $b(G)=\left\lceil\frac{2 n-2}{r+1}\right\rceil$.

r-sets and the determining number

Denote by $\mathrm{S}_{n, r}$, and $\mathrm{A}_{n, r}$ the symmetric and alternating groups S_{n} and A_{n} acting on r-subsets of $[n]$. We will be discussing the base size problem for G, which is equivalent to a purely graph-theoretic problem:

The determining number $\operatorname{Det}(\Gamma)$, of a graph $\Gamma=(V, E)$ is the minimum cardinality of a set $S \subseteq V$ such that $\operatorname{Aut}(\Gamma)_{(S)}=1$. Given positive integers $n \geq 2 r$, the Kneser graph, $K_{n: r}$, has vertex set $V=\{A \subseteq[n]:|A|=r\}$, where sets are adjacent if and only if they are disjoint. Hence, $\operatorname{Det}\left(K_{n: r}\right)=b\left(\mathrm{~S}_{n, r}\right)$.

Theorem: (Halasi, 2012) If $n \geq\left(r^{2}+r\right) / 2$, then $b(G)=\left\lceil\frac{2 n-2}{r+1}\right\rceil$.

Main result

Given $I, k, r \in \mathbb{N}$ set $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{\prime}{i}\right)$.
 St Andrews

Main result

Given $I, k, r \in \mathbb{N}$ set $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Theorem: (dV+Roney-Dougal, 2023) Let $n \geq 2 r$ be fixed and let $/$ be minimal such that there exists some $k \leq I+1$ satisfying $0 \leq m_{r}(I, k) \leq\binom{ l}{k}$ and $\sum_{i=0}^{k-1}\binom{l}{i}+m_{r}(I, k) \geq n$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~A}_{n+1, r}\right)=l$.

Main result

Given $I, k, r \in \mathbb{N}$ set $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Theorem: (dV+Roney-Dougal, 2023) Let $n \geq 2 r$ be fixed and let $/$ be minimal such that there exists some $k \leq I+1$ satisfying $0 \leq m_{r}(I, k) \leq\binom{ l}{k}$ and $\sum_{i=0}^{k-1}\binom{l}{i}+m_{r}(I, k) \geq n$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~A}_{n+1, r}\right)=l$.

A similar result was obtained independently by Mecenero+Spiga, although it takes a surprisingly different form.

Main result

Given $I, k, r \in \mathbb{N}$ set $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Theorem: (dV+Roney-Dougal, 2023) Let $n \geq 2 r$ be fixed and let $/$ be minimal such that there exists some $k \leq I+1$ satisfying $0 \leq m_{r}(I, k) \leq\binom{ l}{k}$ and $\sum_{i=0}^{k-1}\binom{l}{i}+m_{r}(I, k) \geq n$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~A}_{n+1, r}\right)=l$.

A similar result was obtained independently by Mecenero+Spiga, although it takes a surprisingly different form.

Corollary: Every almost simple primitive permutation group with alternating socle has known base size.

Consequences of the main result

Corollary: Let n and r be positive integers satisfying $\frac{r^{2}+r}{2}>n \geq r^{3 / 2}+\frac{r}{2}+1$. Then

$$
b\left(\mathrm{~S}_{n, r}\right)=\left\lceil\left(3\left(2 n+r-\frac{5}{4}\right)+r^{2}\right)^{\frac{1}{2}}-r-\frac{3}{2}\right\rceil .
$$

Consequences of the main result

Corollary: Let n and r be positive integers satisfying $\frac{r^{2}+r}{2}>n \geq r^{3 / 2}+\frac{r}{2}+1$. Then

$$
b\left(\mathrm{~S}_{n, r}\right)=\left\lceil\left(3\left(2 n+r-\frac{5}{4}\right)+r^{2}\right)^{\frac{1}{2}}-r-\frac{3}{2}\right\rceil .
$$

Corollary: Let $s \in(0,1]$. Then $b\left(\mathrm{~S}_{r^{1+s}, r}\right)=\Theta\left(r^{s}\right)$, that is, there exist $c, C>0$ such that

$$
c r^{s} \leq b\left(\mathrm{~S}_{r^{1+s}, r}\right) \leq C r^{s}
$$

for all r.

Ingredients of the proof

Let $S_{n, \leq r}$ denote S_{n} with its action on all subsets of $[n]$ of size at most r.

Ingredients of the proof

Let $S_{n, \leq r}$ denote S_{n} with its action on all subsets of $[n]$ of size at most r.

Lemma: (Halasi, 2012) Fix $n \geq 2 r$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~S}_{n, \leq r}\right)$.

Ingredients of the proof

Let $S_{n, \leq r}$ denote S_{n} with its action on all subsets of $[n]$ of size at most r.

Lemma: (Halasi, 2012) Fix $n \geq 2 r$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~S}_{n, \leq r}\right)$.
We can view a base for $S_{n, \leq r}$ as a hypergraph on [n] with hyperedges of size at most r.

Ingredients of the proof

Let $S_{n, \leq r}$ denote S_{n} with its action on all subsets of $[n]$ of size at most r.

Lemma: (Halasi, 2012) Fix $n \geq 2 r$. Then $b\left(\mathrm{~S}_{n, r}\right)=b\left(\mathrm{~S}_{n, \leq r}\right)$.
We can view a base for $\mathrm{S}_{n, \leq r}$ as a hypergraph on [n] with hyperedges of size at most r.

With such a framework, the notions of neighbourhoods, and duals become sensible.

Neighbourhoods

Given a hypergraph $H=(V, E)$ and $v \in V$, define the neighbourhood of v to be the set

$$
N_{H}(v):=\{e \in E(H): v \in e\} .
$$

Neighbourhoods

Given a hypergraph $H=(V, E)$ and $v \in V$, define the neighbourhood of v to be the set

$$
N_{H}(v):=\{e \in E(H): v \in e\} .
$$

Lemma: Let n and r be positive integers with $n \geq 2 r$, and \mathcal{B} a base for $S_{n, r}$ with $|\mathcal{B}|=I$. Then $\operatorname{Ir}=\sum_{x \in[n]}\left|N_{\mathcal{B}}(x)\right|$.

Neighbourhoods

Given a hypergraph $H=(V, E)$ and $v \in V$, define the neighbourhood of v to be the set

$$
N_{H}(v):=\{e \in E(H): v \in e\} .
$$

Lemma: Let n and r be positive integers with $n \geq 2 r$, and \mathcal{B} a base for $S_{n, r}$ with $|\mathcal{B}|=l$. Then $\operatorname{Ir}=\sum_{x \in[n]}\left|N_{\mathcal{B}}(x)\right|$.

Neighbourhoods also give us a nice combinatorial description of a base:

Neighbourhoods

Given a hypergraph $H=(V, E)$ and $v \in V$, define the neighbourhood of v to be the set

$$
N_{H}(v):=\{e \in E(H): v \in e\} .
$$

Lemma: Let n and r be positive integers with $n \geq 2 r$, and \mathcal{B} a base for $S_{n, r}$ with $|\mathcal{B}|=l$. Then $\operatorname{Ir}=\sum_{x \in[n]}\left|N_{\mathcal{B}}(x)\right|$.

Neighbourhoods also give us a nice combinatorial description of a base: a collection \mathcal{B} of $(\leq) r$-subsets of $[n]$ is a base for $S_{n,(\leq) r}$ if and only if no two points share a common neighbourhood.

Interpretation of $m_{r}(I, k)$

$$
\text { Recall } m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}\right) .
$$

Interpretation of $m_{r}(I, k)$

Recall $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{Ir}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Given \mathcal{B}, k, set $A_{1}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right|<k\right\}$ and $A_{2}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right| \geq k\right\}$. Then $\sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|=\operatorname{Ir}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$.

Interpretation of $m_{r}(I, k)$

Recall $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{Ir}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Given \mathcal{B}, k, set $A_{1}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right|<k\right\}$ and $A_{2}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right| \geq k\right\}$. Then $\sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|=\operatorname{lr}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$. There are at most $\binom{l}{i}$ distinct neighbourhoods of size i, so $\operatorname{Ir}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$ is minimally $\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}=k m_{r}(I, k)$.

Interpretation of $m_{r}(I, k)$

Recall $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{Ir}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Given \mathcal{B}, k, set $A_{1}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right|<k\right\}$ and $A_{2}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right| \geq k\right\}$. Then $\sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|=\operatorname{lr}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$. There are at most $\binom{l}{i}$ distinct neighbourhoods of size i, so $\operatorname{lr}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$ is minimally $\operatorname{Ir}-\sum_{i=1}^{k-1} i\binom{l}{i}=k m_{r}(I, k)$. On the other hand $k\left|A_{2}\right| \leq \sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|$.

Interpretation of $m_{r}(I, k)$

Recall $m_{r}(I, k):=\frac{1}{k}\left(\operatorname{lr}-\sum_{i=1}^{k-1} i\binom{l}{i}\right)$.
Given \mathcal{B}, k, set $A_{1}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right|<k\right\}$ and $A_{2}:=\left\{x \in[n]:\left|N_{\mathcal{B}}(x)\right| \geq k\right\}$. Then $\sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|=\operatorname{lr}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$. There are at most $\binom{l}{i}$ distinct neighbourhoods of size i, so $\operatorname{lr}-\left(\sum_{x \in A_{1}}\left|N_{\mathcal{B}}(x)\right|\right)$ is minimally $\operatorname{Ir}-\sum_{i=1}^{k-1} i\binom{l}{i}=k m_{r}(I, k)$. On the other hand $k\left|A_{2}\right| \leq \sum_{x \in A_{2}}\left|N_{\mathcal{B}}(x)\right|$. Thus $m_{r}(l, k)$ estimates the minimum number of points of [n] which have neighbourhoods of size at least k.

Making a small base

Let H be a hypergraph. The dual of H, denoted H^{\perp}, is the hypergraph with vertex set identified with the hyperedges of H, and hyperedges identified with vertices of H, where the incidence relations of H^{\perp} are the reverse of those of H.

Making a small base

Let H be a hypergraph. The dual of H, denoted H^{\perp}, is the hypergraph with vertex set identified with the hyperedges of H, and hyperedges identified with vertices of H, where the incidence relations of H^{\perp} are the reverse of those of H.

$$
\mapsto\{\{1,2,4,5\},\{3,5\},\{2,3,4,5\},\{1,4,5\}\}
$$

Making a small base

Let H be a hypergraph. The dual of H, denoted H^{\perp}, is the hypergraph with vertex set identified with the hyperedges of H, and hyperedges identified with vertices of H, where the incidence relations of H^{\perp} are the reverse of those of H.

$$
\mapsto\{\{1,2,4,5\},\{3,5\},\{2,3,4,5\},\{1,4,5\}\}
$$

Edges become vertices and neighbourhoods become edges.

Making a small base

Let H be a hypergraph. The dual of H, denoted H^{\perp}, is the hypergraph with vertex set identified with the hyperedges of H, and hyperedges identified with vertices of H, where the incidence relations of H^{\perp} are the reverse of those of H.

$$
\mapsto\{\{1,2,4,5\},\{3,5\},\{2,3,4,5\},\{1,4,5\}\}
$$

Edges become vertices and neighbourhoods become edges. Thus to make a small base it suffices to make its dual - a hypergraph with n (distinct) edges and as few vertices as possible so that no vertex is contained in more than r edges.

Example

Suppose we wish to construct a minimum base for $\mathrm{S}_{18,7}$. St Andrews

Example

Suppose we wish to construct a minimum base for $S_{18,7}$.
$(I, k)=(5,3)$ satisfy the conditions of the theorem with $/$ minimal. Since $k=3$ we start with K_{5} adorned with all loops and the empty edge.

Example

Suppose we wish to construct a minimum base for $S_{18,7}$.
$(I, k)=(5,3)$ satisfy the conditions of the theorem with $/$ minimal. Since $k=3$ we start with K_{5} adorned with all loops and the empty edge.

Example

Suppose we wish to construct a minimum base for $S_{18,7}$.
$(I, k)=(5,3)$ satisfy the conditions of the theorem with $/$ minimal. Since $k=3$ we start with K_{5} adorned with all loops and the empty edge.

We now add hyperedges of size three until the hypergraph has 18 edges, being careful that no vertex ends up with neighbourhood bigger than 7 .

Example

Suppose we wish to construct a minimum base for $S_{18,7}$.
$(I, k)=(5,3)$ satisfy the conditions of the theorem with $/$ minimal. Since $k=3$ we start with K_{5} adorned with all loops and the empty edge.

We now add hyperedges of size three until the hypergraph has 18 edges, being careful that no vertex ends up with neighbourhood bigger than 7 .

Example cont'd

Taking the dual gives

$$
\begin{aligned}
& \{\{2,7,8,9,10,17\},\{3,7,11,12,13,17\},\{4,8,11,14,15,18\}, \\
& \{5,9,12,14,16,18\},\{6,10,13,15,16,17,18\}\}
\end{aligned}
$$

as a minimum base for $S_{18, \leq 7}$

Example cont'd

Taking the dual gives

$$
\begin{aligned}
& \{\{2,7,8,9,10,17\},\{3,7,11,12,13,17\},\{4,8,11,14,15,18\}, \\
& \{5,9,12,14,16,18\},\{6,10,13,15,16,17,18\}\}
\end{aligned}
$$

as a minimum base for $S_{18, \leq 7}$
Applying Halasi's algorithm yields

$$
\begin{aligned}
& \{\{2,7,8,9,10,17,18\},\{3,7,11,12,13,17,18\}, \\
& \{4,8,11,14,15,17,18\},\{5,7,9,12,14,16,18\} \\
& \{6,10,13,15,16,17,18\}\}
\end{aligned}
$$

a minimum base for $S_{18,7}$.

Thanks for listening!

