## Graph growth of permutation groups

MARSDEN FUNE

TE PŪTEA RANGAHAU A MARSDEN



- **Đorđe Mitrović**
- **University of Auckland**
- Supervisors: Gabriel Verret, Jeroen Schillewaert, Florian Lehner
  - Seminar on Groups and Graphs
    - 8th May 2024

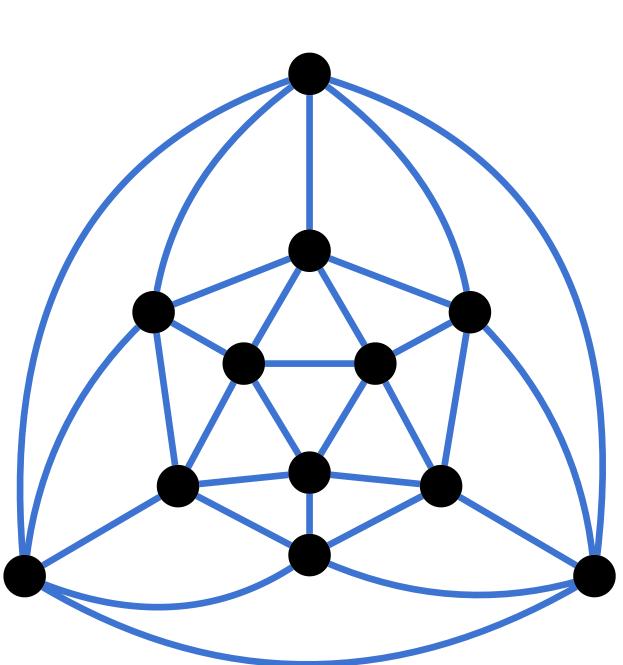


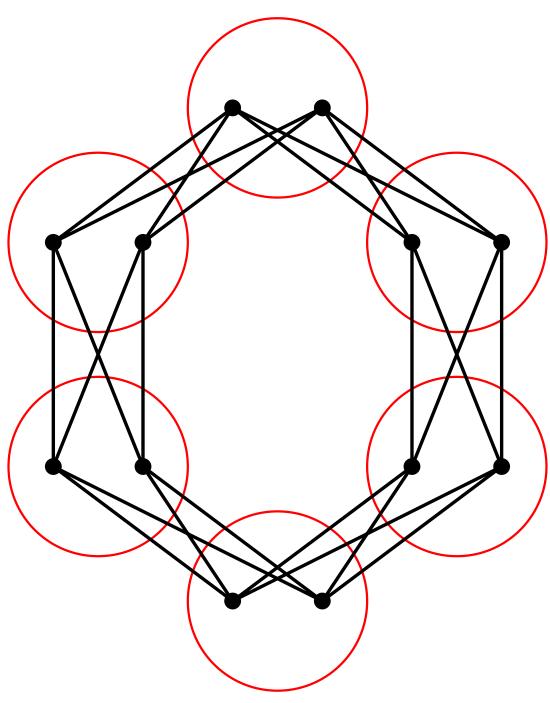


#### Graphs are finite, simple (undirected, no multiple edges, no loops) and connected

**Automorphisms** of a graph  $\Gamma = (V, E)$  are permutations of *V* preserving *E* 

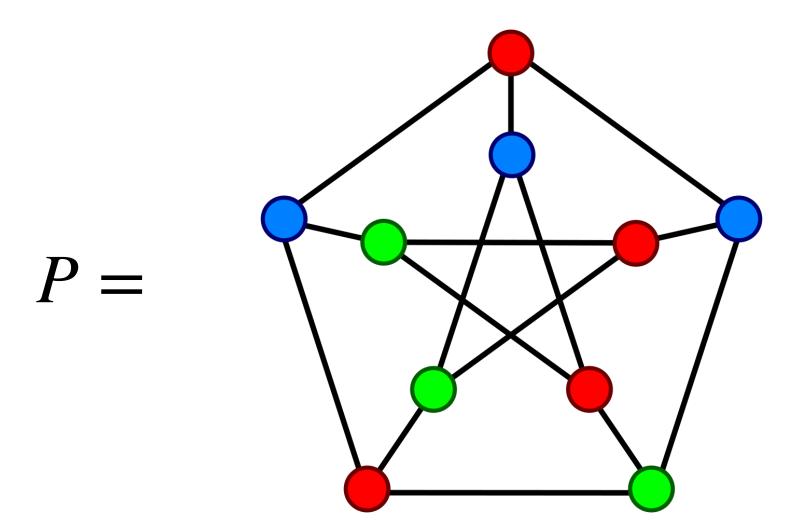
- A graph  $\Gamma$  is **arc-transitive** if Aut( $\Gamma$ ) is transitive on arcs (directed edges)  $\forall (x, y), (z, w)$  with  $\{x, y\}, \{z, w\} \in E(\Gamma)$   $\exists g \in Aut(\Gamma) \text{ s.t. } (x, y)^g = (z, w)$ 
  - Valency is the number of neighbours of a vertex





### Tutte's theorem

Let  $\Gamma$  be a finite 3-valent, connected graph and  $G \leq \operatorname{Aut}(\Gamma)$  transitive on the arcs of  $\Gamma$ .  $|G_{\nu}| \leq 48.$ 





 $\operatorname{Aut}(P) \cong_{perm} S_5 \curvearrowright \left( \begin{array}{c} \{1, \dots, 5\} \\ 2 \end{array} \right)$ 

 $\operatorname{Aut}(P)_{v} \cong S_{3} \times S_{2}$ 

### Tutte's theorem

- Let  $\Gamma$  be a finite 3-valent, connected graph and
  - $G \leq \operatorname{Aut}(\Gamma)$  transitive on the arcs of  $\Gamma$ .
    - $|G_v| \leq 48.$

...

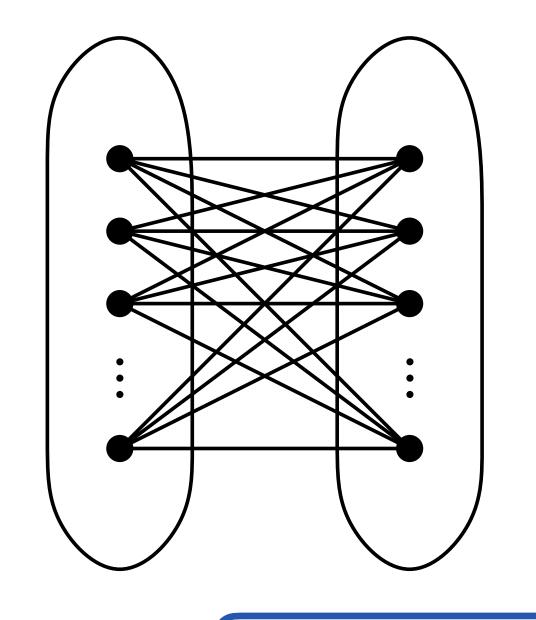
Census of 3-valent arc-transitive graphs on  $\leq 10000$  vertices (Conder) Asymptotic enumeration (Potočnik, Spiga, Verret)

### Local action

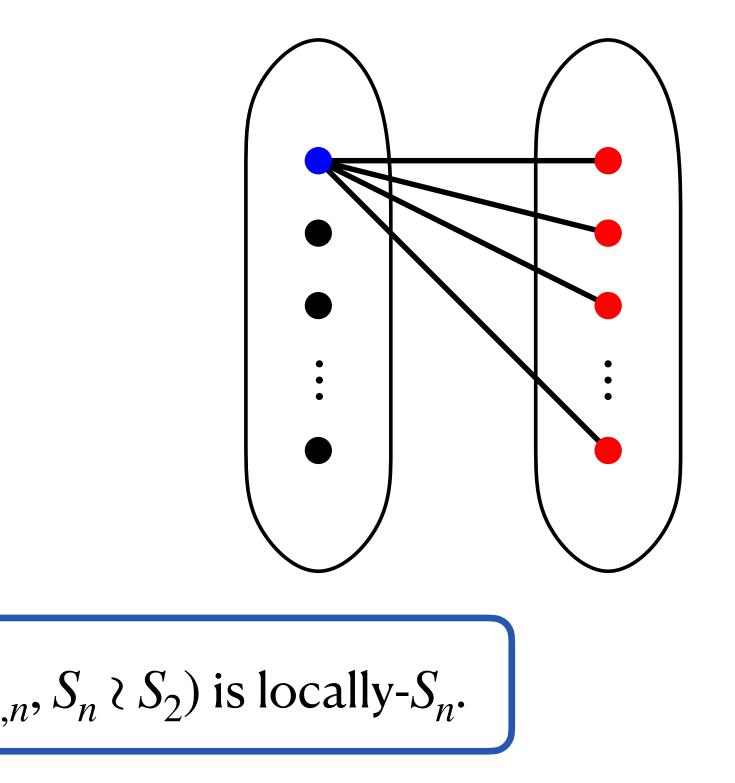
 $\Gamma$  is a connected graph,  $G \leq \operatorname{Aut}(\Gamma)$  vertex-transitive.

The pair  $(\Gamma, G)$  is locally-*L* if  $G_v \curvearrowright \Gamma(v)$  induces *L*.

If 
$$\Gamma = K_{n,n}$$
 and  $G = \operatorname{Aut}(K_{n,n}) \cong S_n \wr S_2$ , then  $G_v = S_{n-1} \times S_n$  and  $L = S_n$ .

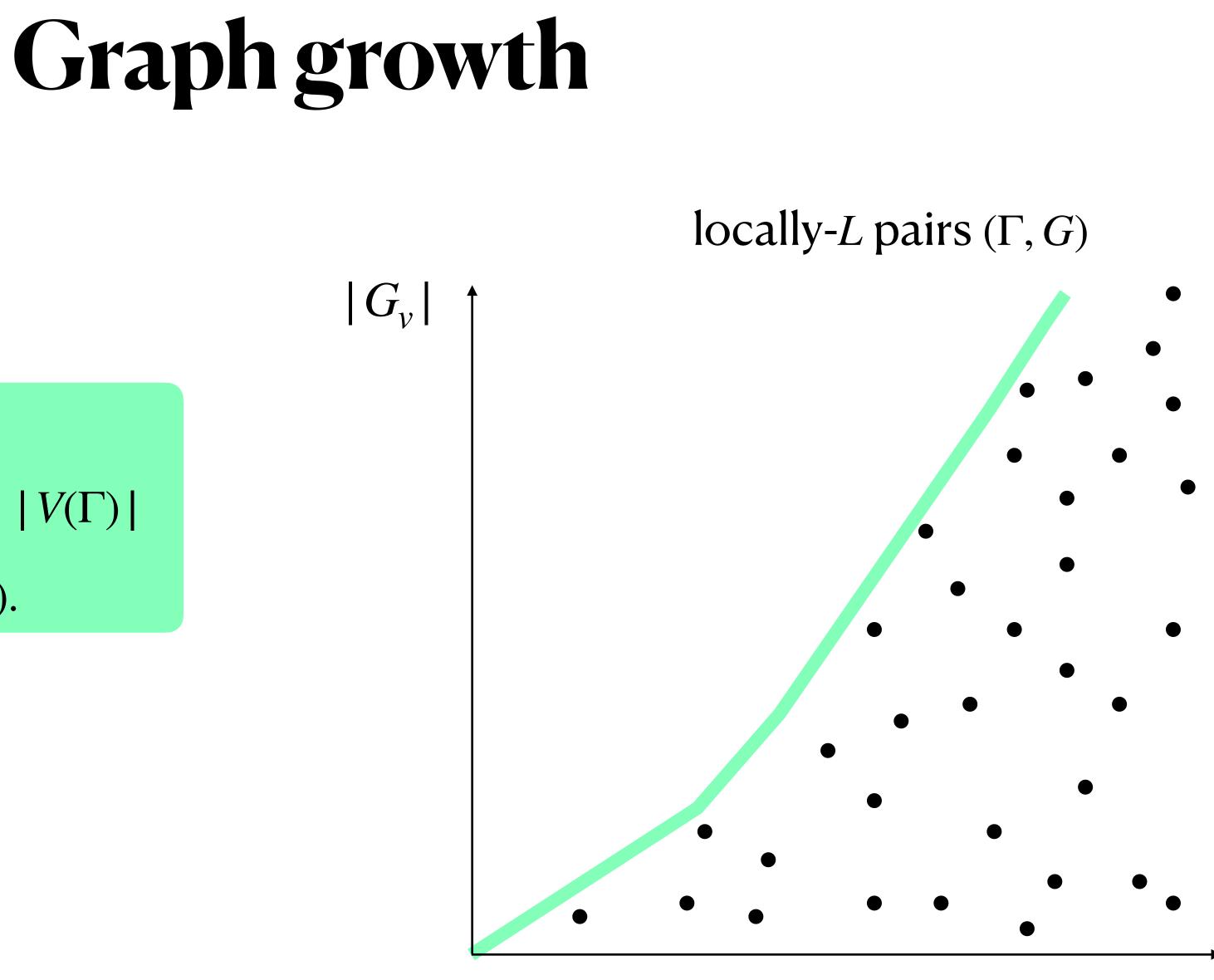


The pair 
$$(K_{n,n})$$



#### L = permutation group

Graph growth of *L* is the growth rate of  $|G_v|$  wrt  $|V(\Gamma)|$ in locally-*L* pairs ( $\Gamma$ , *G*).



 $|V(\Gamma)|$ 

## Graph growth

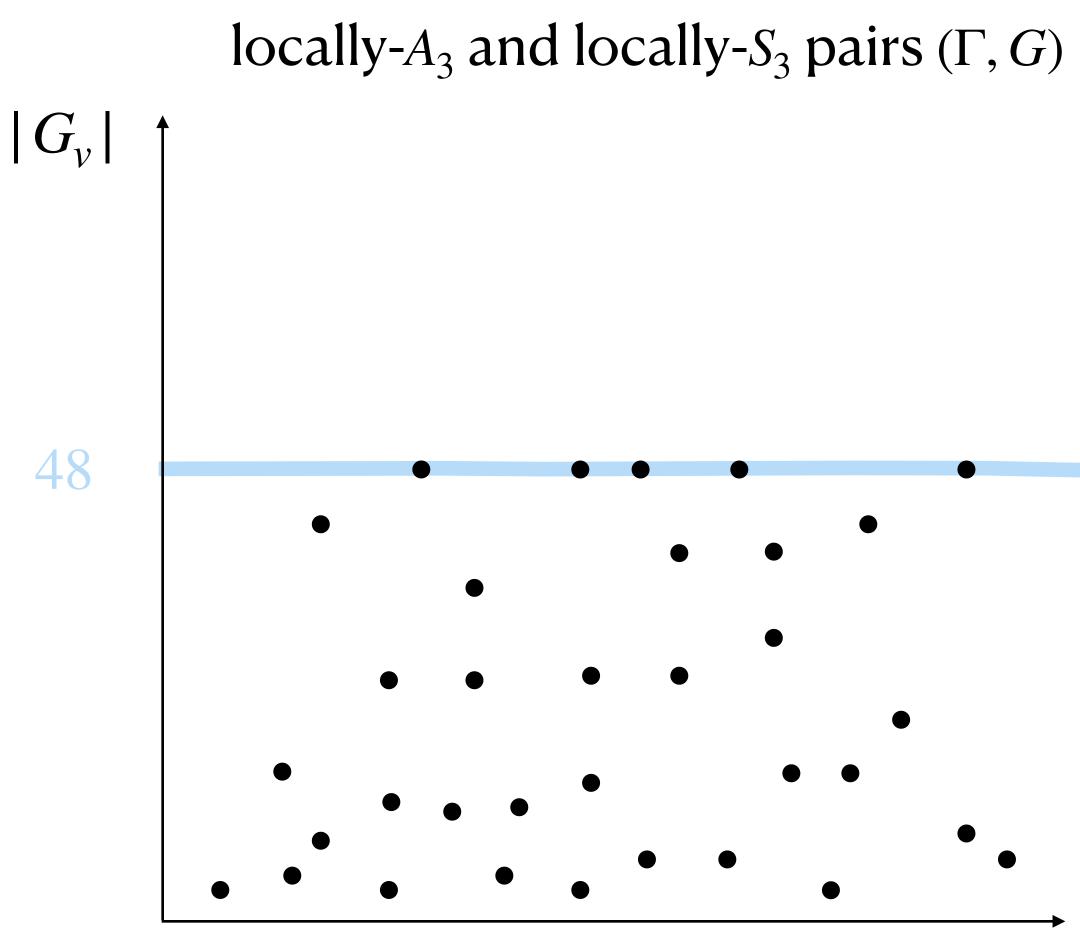
#### Graph growth of *L*

is the growth rate of  $|G_v|$  wrt  $|V(\Gamma)|$ 

in locally-*L* pairs ( $\Gamma$ , *G*).

Tutte's theorem

 $A_3$  and  $S_3$  have Constant growth



 $|V(\Gamma)|$ 

### Graph growth

Graph growth of *L* 

is the growth rate of  $|G_v|$  wrt  $|V(\Gamma)|$ 

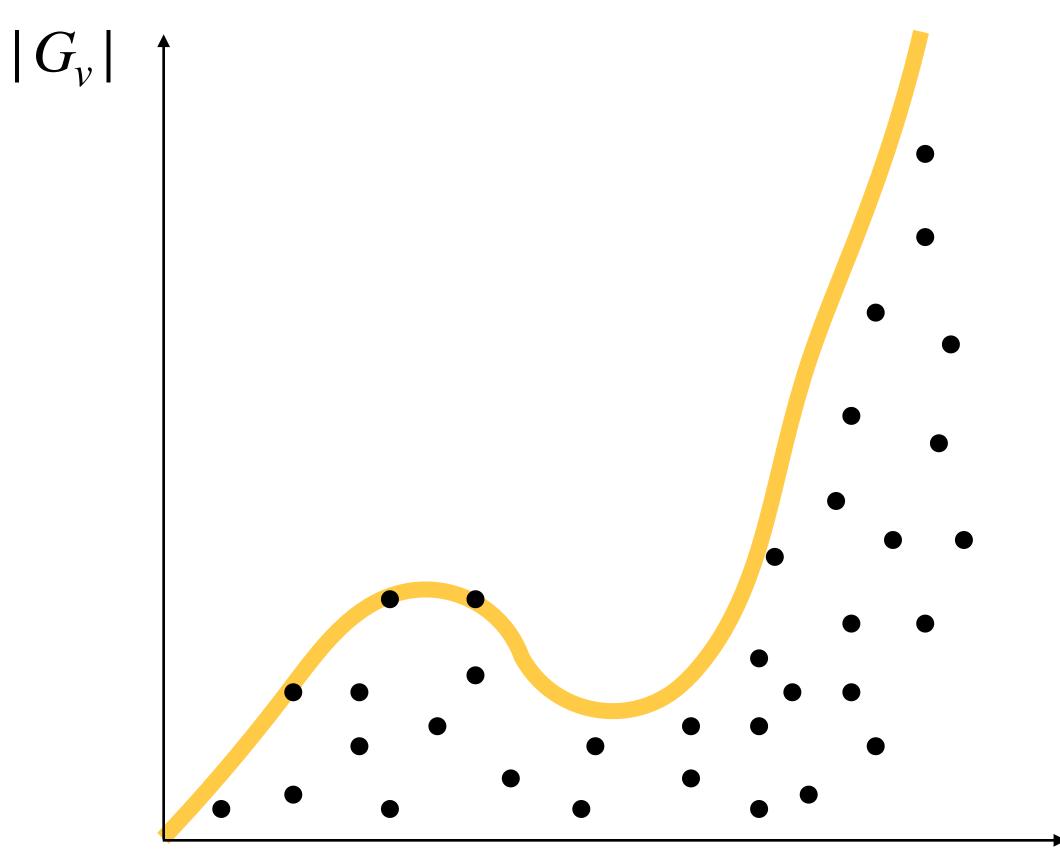
in locally-*L* pairs ( $\Gamma$ , *G*).

Tutte's theorem

 $A_3$  and  $S_3$  have Constant growth

For even  $n \ge 6$ ,  $D_n$  has Polynomial growth

#### locally- $D_n$ pairs $(\Gamma, G), n \ge 6$ even



 $|V(\Gamma)|$ 

## Graphgrowth

Graph growth of *L* 

is the growth rate of  $|G_v|$  wrt  $|V(\Gamma)|$ 

in locally-*L* pairs ( $\Gamma$ , *G*).

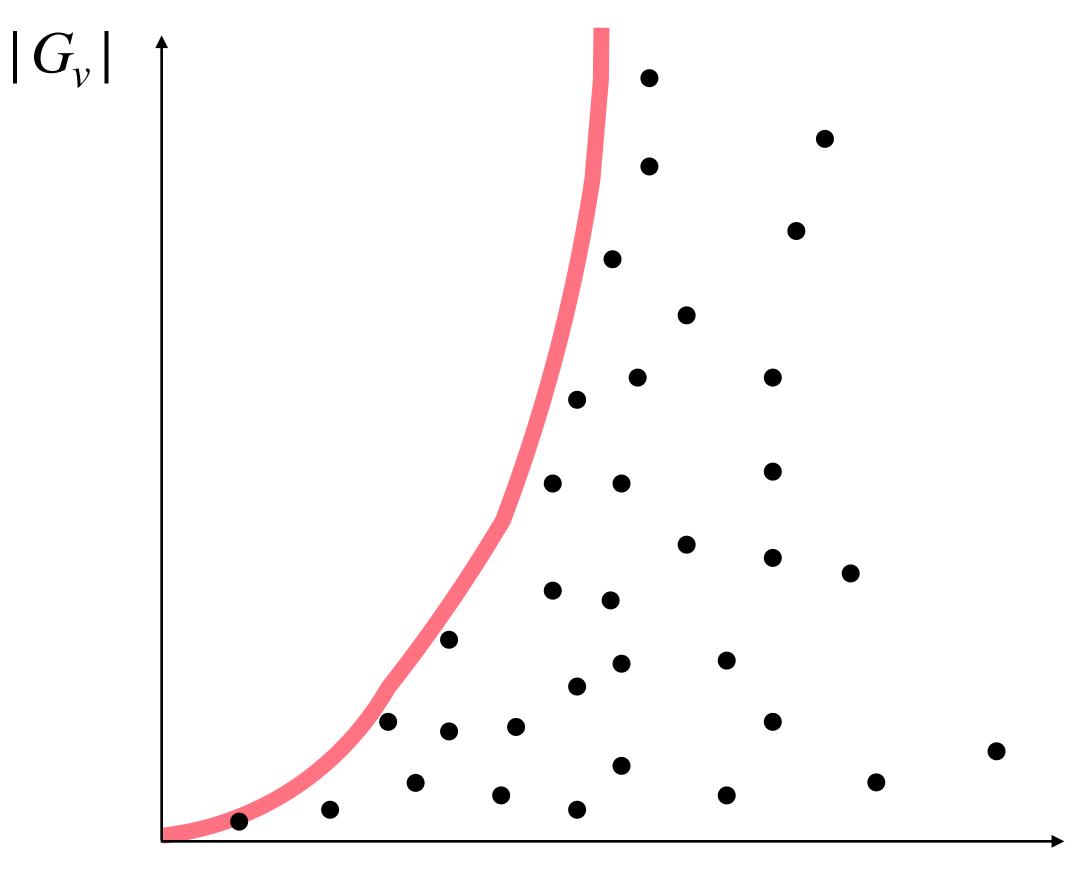
Tutte's theorem

 $A_3$  and  $S_3$  have Constant growth

For even  $n \ge 6$ ,  $D_n$  has Polynomial growth

Imprimitive wreath products have Exponential growth

#### locally-*L* pairs ( $\Gamma$ , *G*) with *L* an imp. wr. prod.





## Graph growth

Graph growth of *L* 

is the growth rate of  $|G_v|$  wrt  $|V(\Gamma)|$ 

in locally-*L* pairs ( $\Gamma$ , *G*).

Tutte's theorem

 $A_3$  and  $S_3$  have Constant growth

For even  $n \ge 6$ ,  $D_n$  has Polynomial growth

Imprimitive wreath products have Exponential growth

### Remarks

"Slow" graph growth still allows

for cool results.

Graph growth is always at most Exponential.

This might not be the full list

of types of graph growth!





### My PhD project

## Graph growth of transitive permutation groups

| Degree | Constant                      | Polynomial | Exponential |
|--------|-------------------------------|------------|-------------|
| 2      | <i>S</i> <sub>2</sub>         | /          | /           |
| 3      | $A_{3}, S_{3}$                | /          | /           |
| 4      | $C_4, V_4, A_4, S_4$          | /          | $D_4$       |
| 5      | $C_5, D_5$<br>$F_5, A_5, S_5$ | /          | /           |
| 6      | six groups                    | $D_6$      | nine groups |
| 7      | seven groups                  | /          | /           |

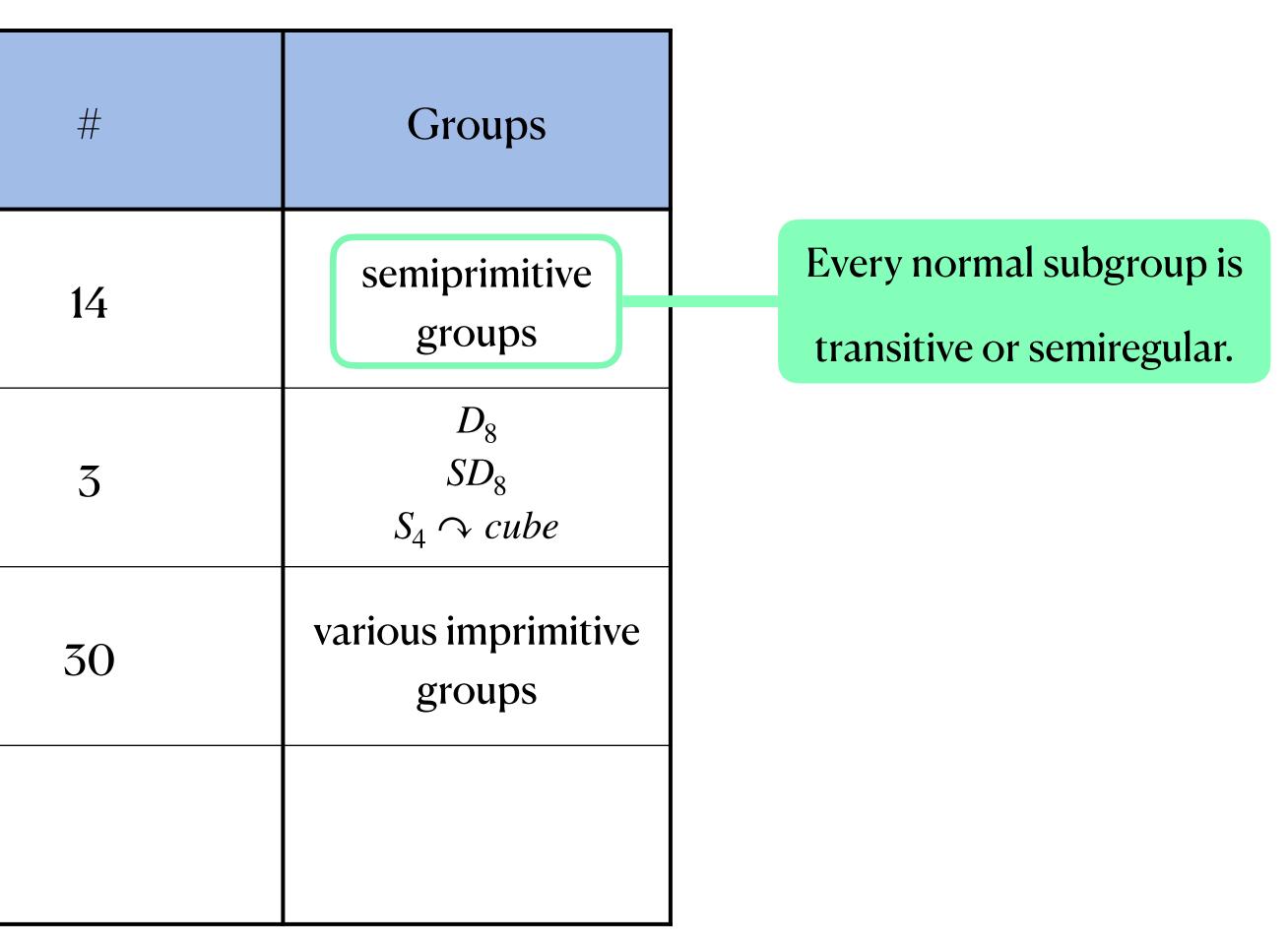
**Degree**  $\leq 7$ 



# Graph growth of transitive permutation groups of degree 8

### Graph growth of transitive permutation groups of degree 8

| Graph growth |  |
|--------------|--|
| Constant     |  |
| Polynomial   |  |
| Exponential  |  |
|              |  |



### Graph growth of transitive permutation groups of degree 8

| Graph growth | #  | Groups                                                                                              |                                                   |
|--------------|----|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Constant     | 14 | semiprimitive<br>groups                                                                             | Every normal subgroup<br>transitive or semiregula |
| Polynomial   | 3  | $\begin{array}{c} D_8\\ SD_8\\ S_4 \curvearrowleft cube\end{array}$                                 |                                                   |
| Exponential  | 30 | various imprimitive<br>groups                                                                       |                                                   |
| UNKNOWN      | 3  | $V_0(\mathbb{F}_2^4) \rtimes A_4$ $V_0(\mathbb{F}_2^4) \rtimes S_4$ $V_0(\mathbb{F}_2^4) \cdot S_4$ |                                                   |



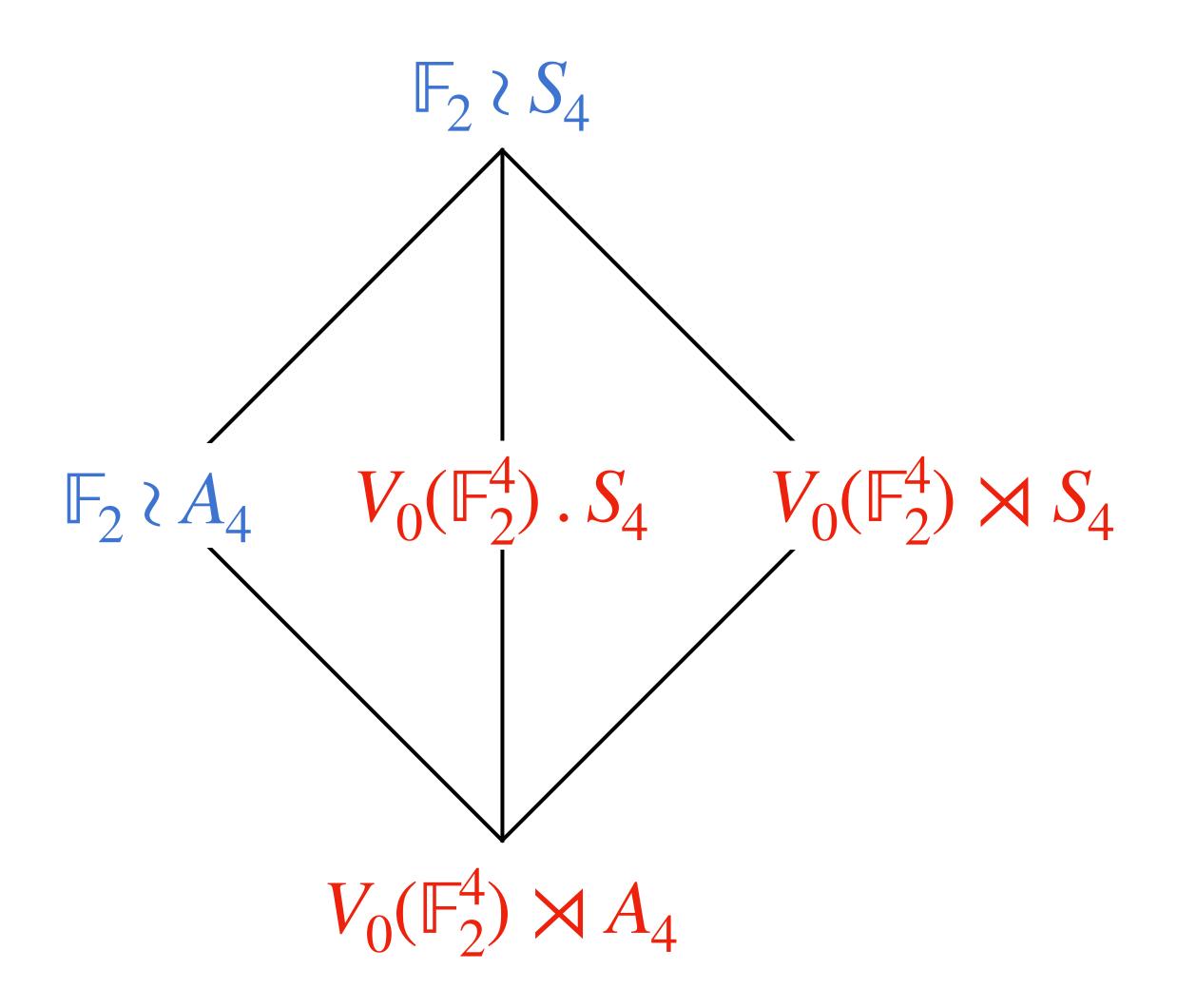
## Three transitive groups of degree 8

Exponential graph growthUnknown graph growth

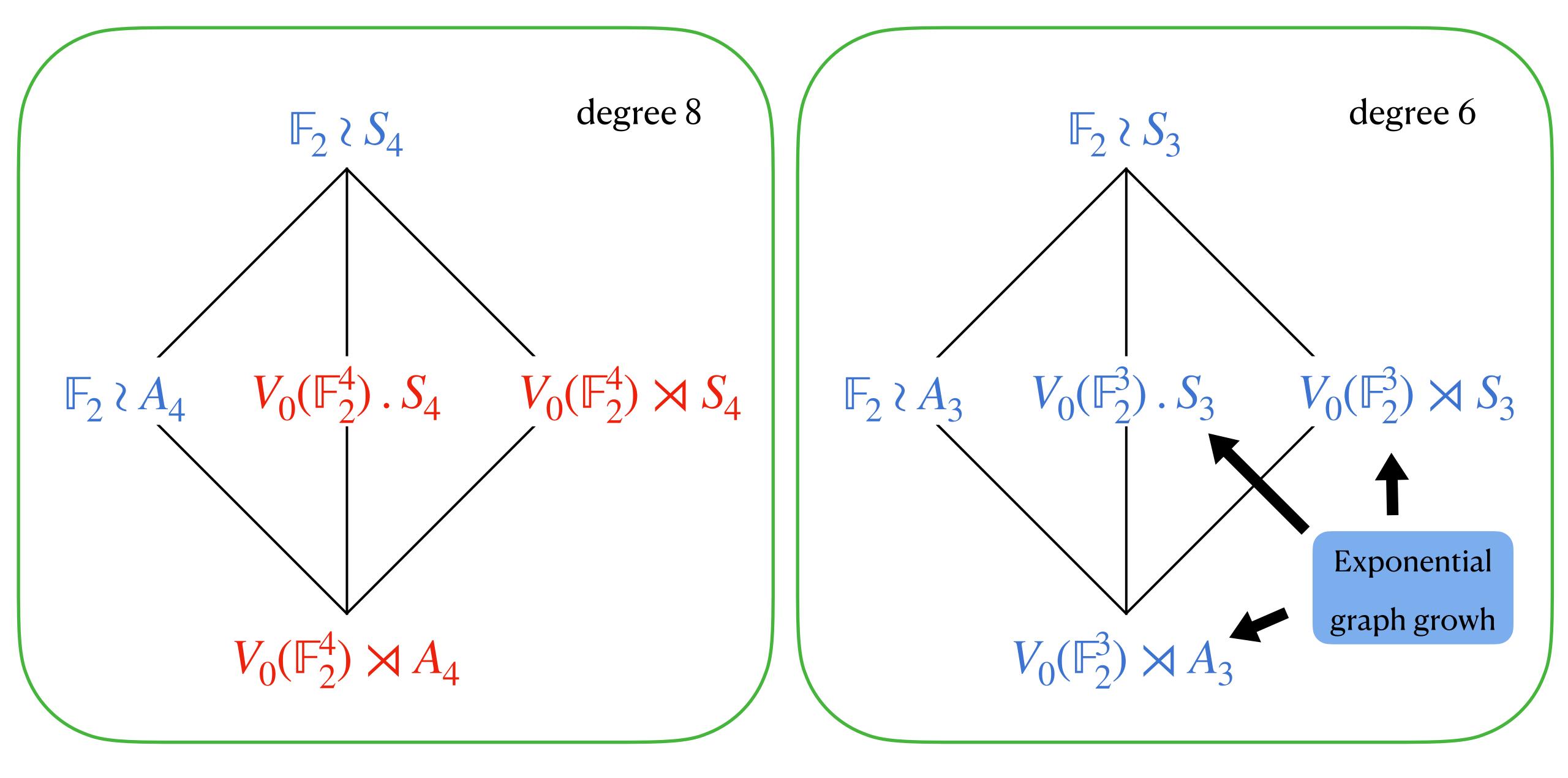
Admit a unique block system with four blocks of size 2

Deleted permutation module

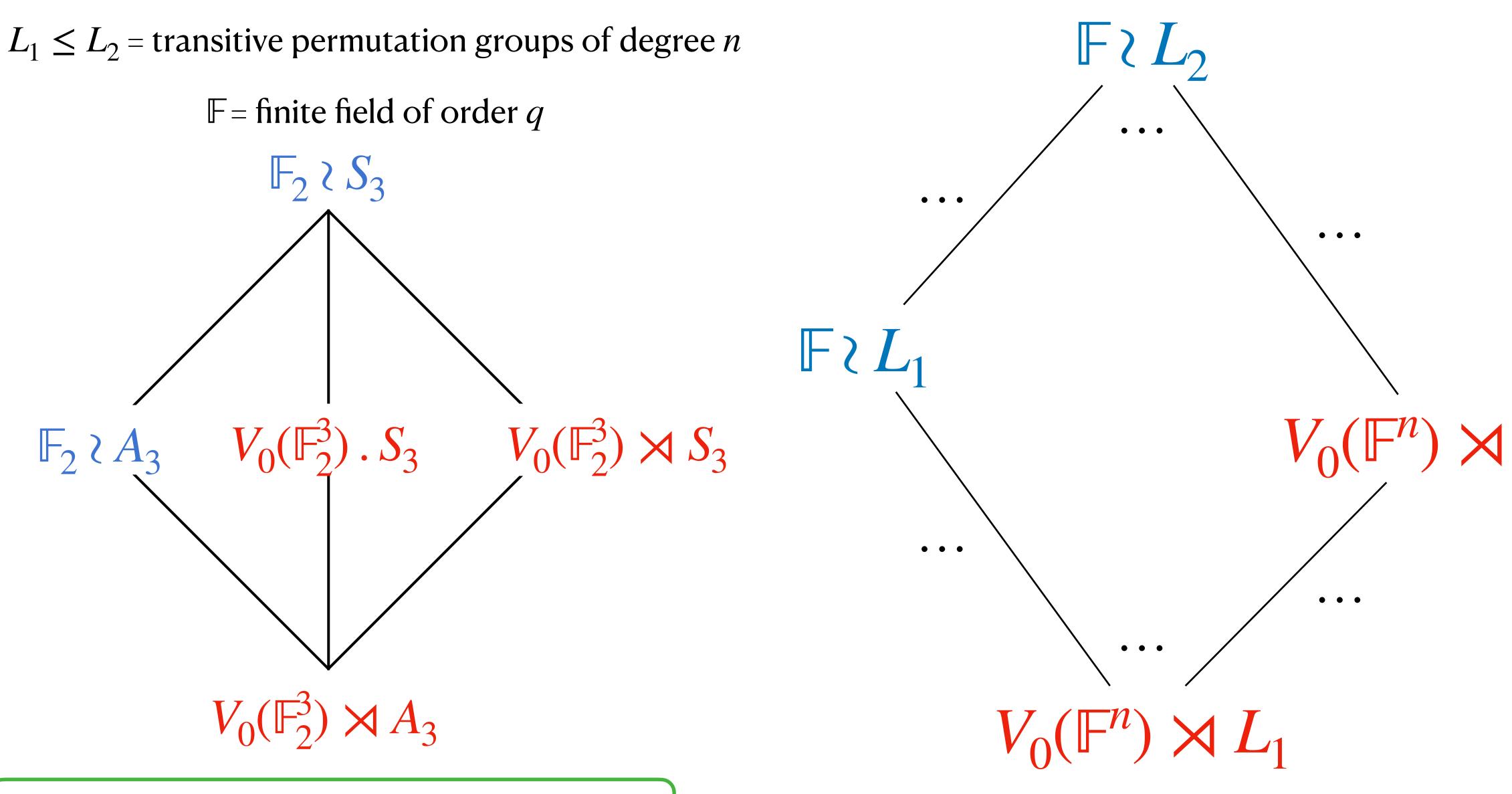
$$V_0(\mathbb{F}^n) = \{(v_1, \dots, v_n) \in \mathbb{F}^n \mid \sum_{i=1}^n v_i = 0\}$$

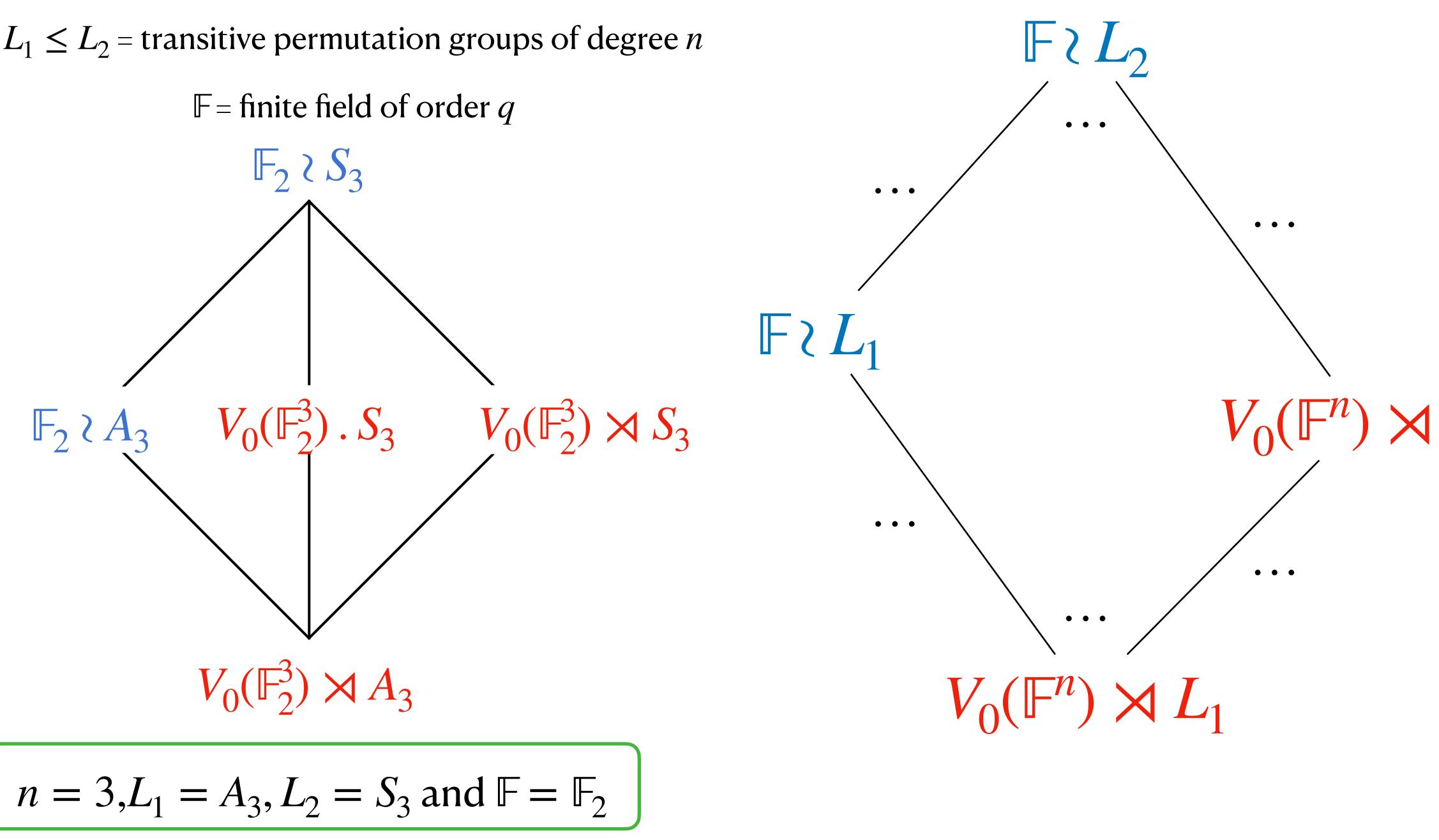




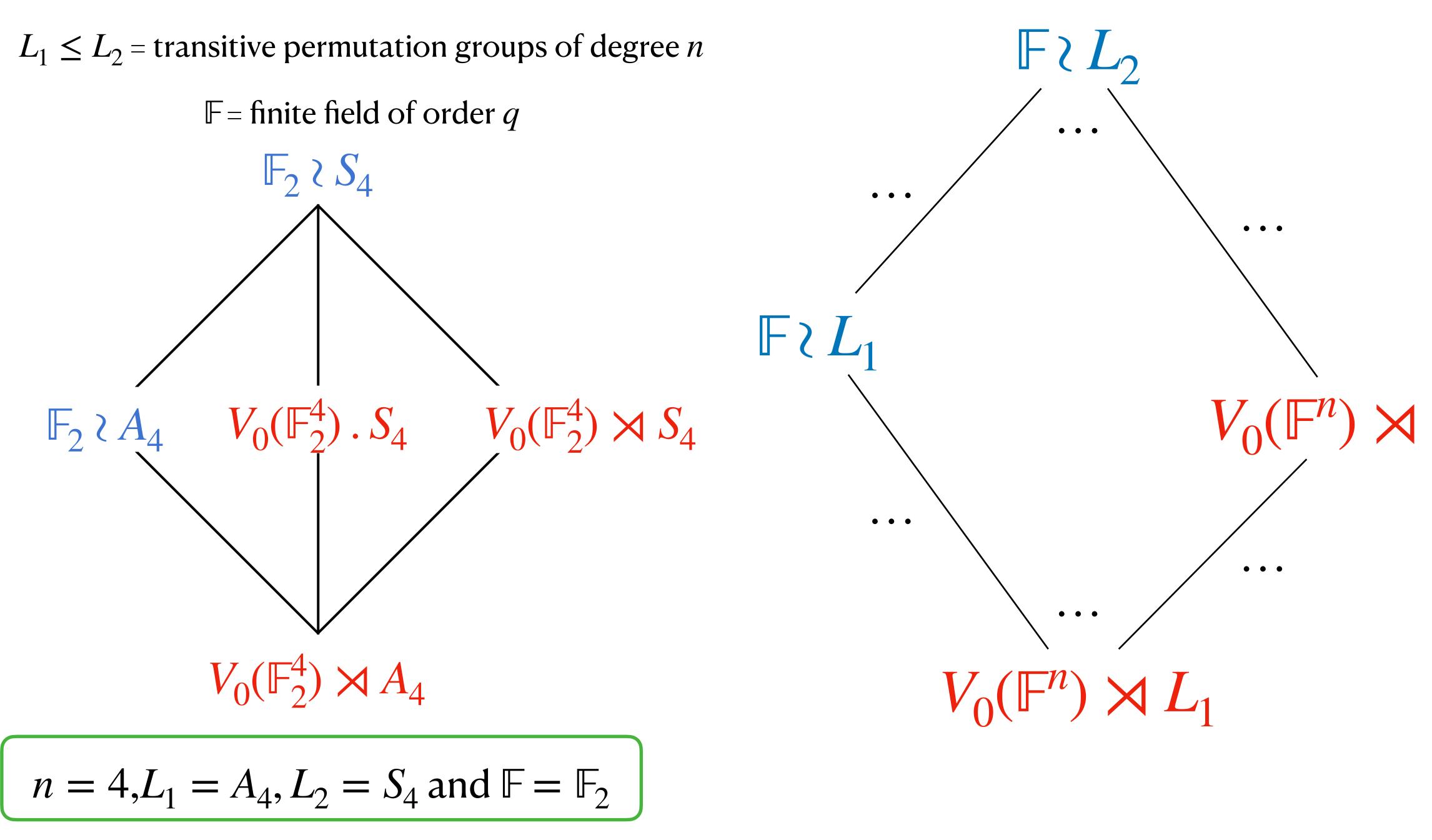


Hujdurović, Potočnik, Verret (2022)







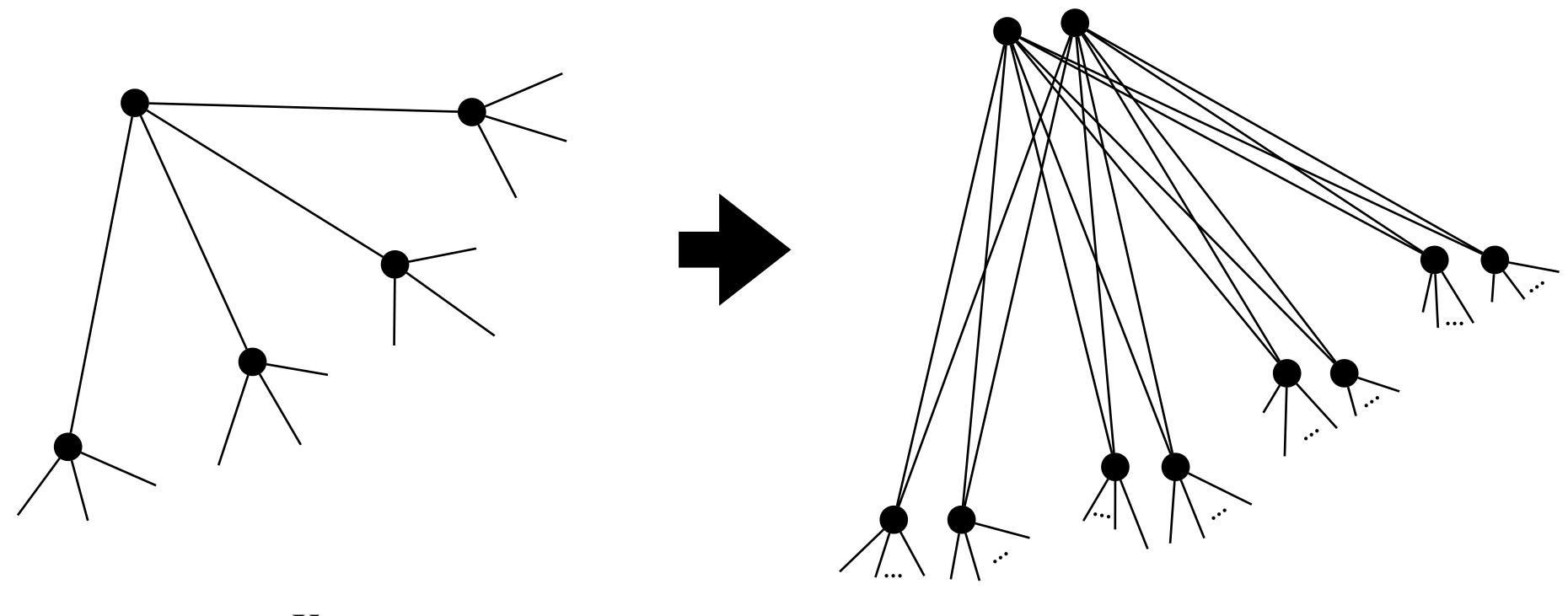




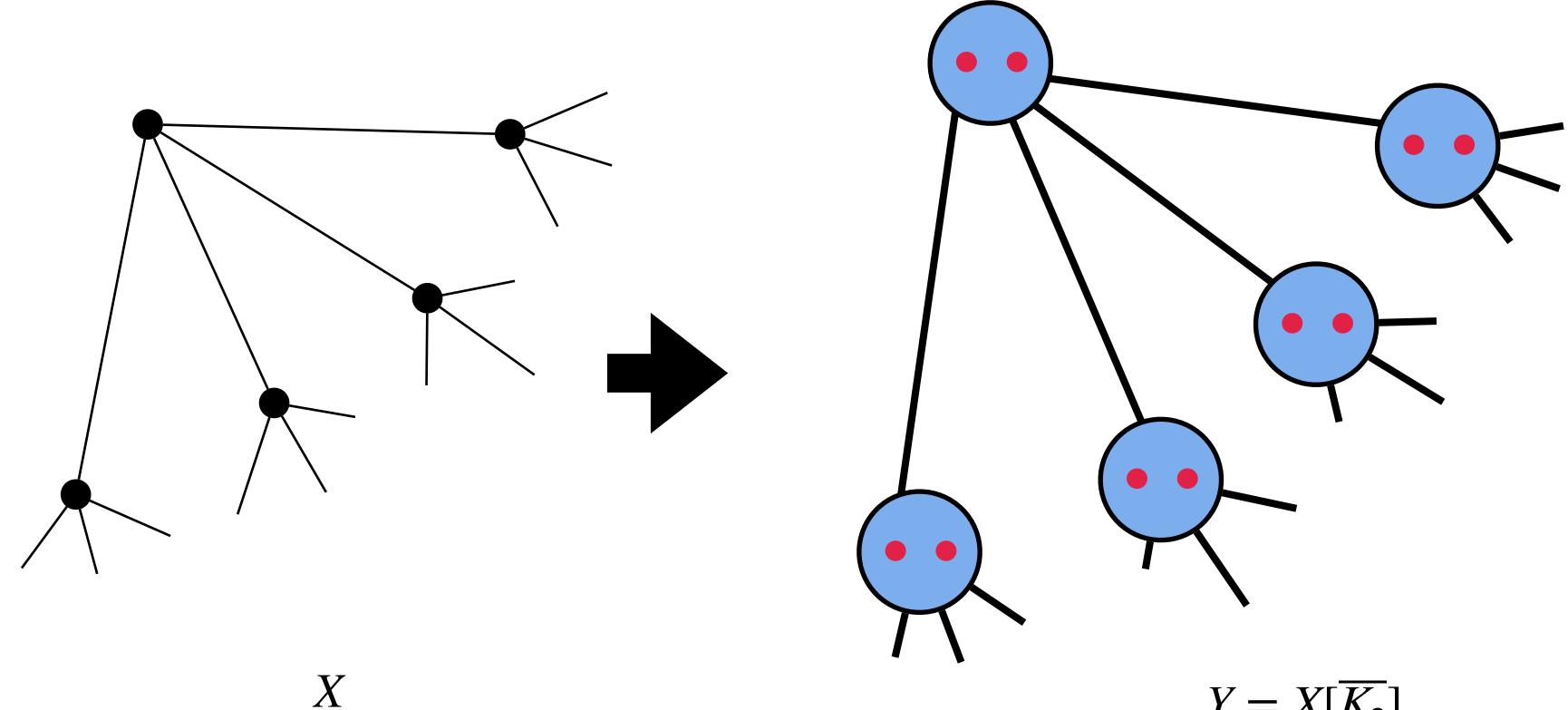
### Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs via lexicographic products

#### Take n = 4, $\mathbb{F} = \mathbb{F}_2$ and $L_1 = A_4$ .

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs

#### via lexicographic products

 $\mathbb{F}_2 \wr \operatorname{Aut}(X) = \mathbb{F}_2^{|V(X)|} \rtimes \operatorname{Aut}(X)$  $\leq \operatorname{Aut}(Y)$ 

> Can we find an  $C \leq \mathbb{F}_2 \wr \operatorname{Aut}(X)$  s.t.

(Y, C) is locally-*L*?

$$C = M \rtimes H$$

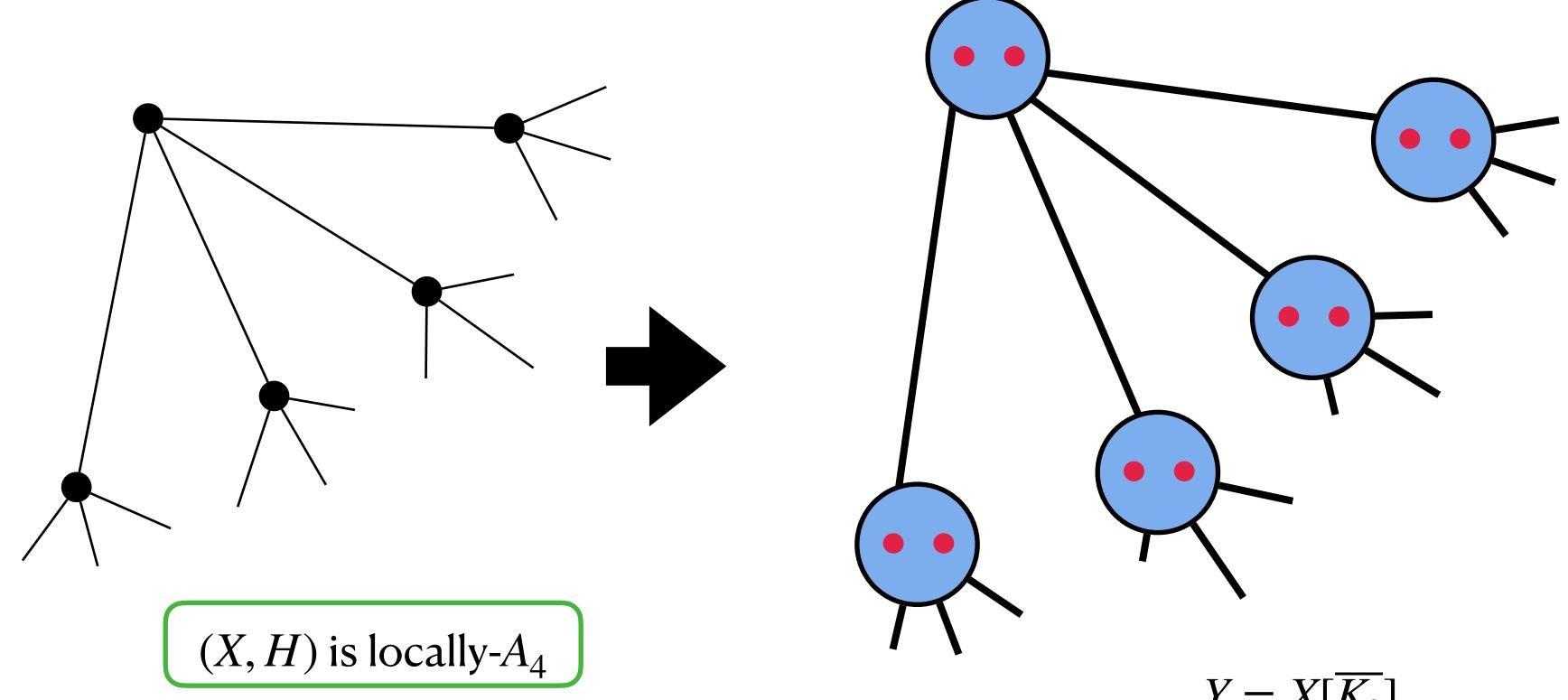
- 1.  $H \leq \operatorname{Aut}(X)$  locally inducing  $A_4$
- $M \leq \mathbb{F}_{2}^{|V(X)|}$  an *H*-module 2.

locally inducing  $V_0(\mathbb{F}_2^4)$ 

$$Y = X[\overline{K_2}]$$



 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs

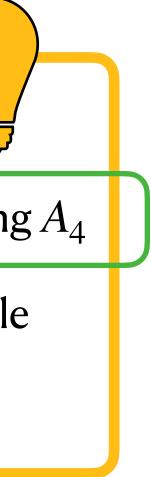
#### via lexicographic products

$$C = M \rtimes H$$

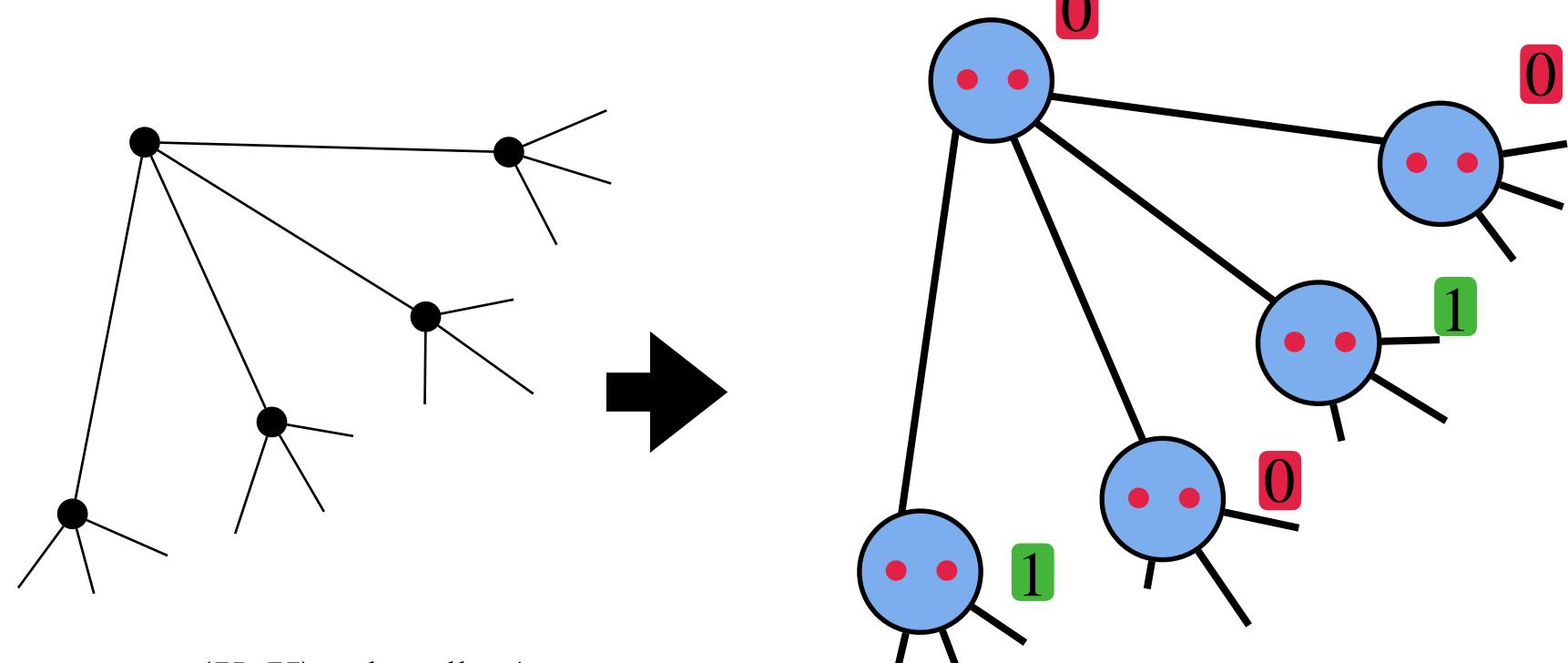
1.  $H \leq \operatorname{Aut}(X)$  locally inducing  $A_4$ 

 $M \leq \mathbb{F}_2^{|V(X)|}$  an *H*-module 2.

locally inducing  $V_0(\mathbb{F}_2^4)$ 



 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



(X, H) is locally- $A_4$ 

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs



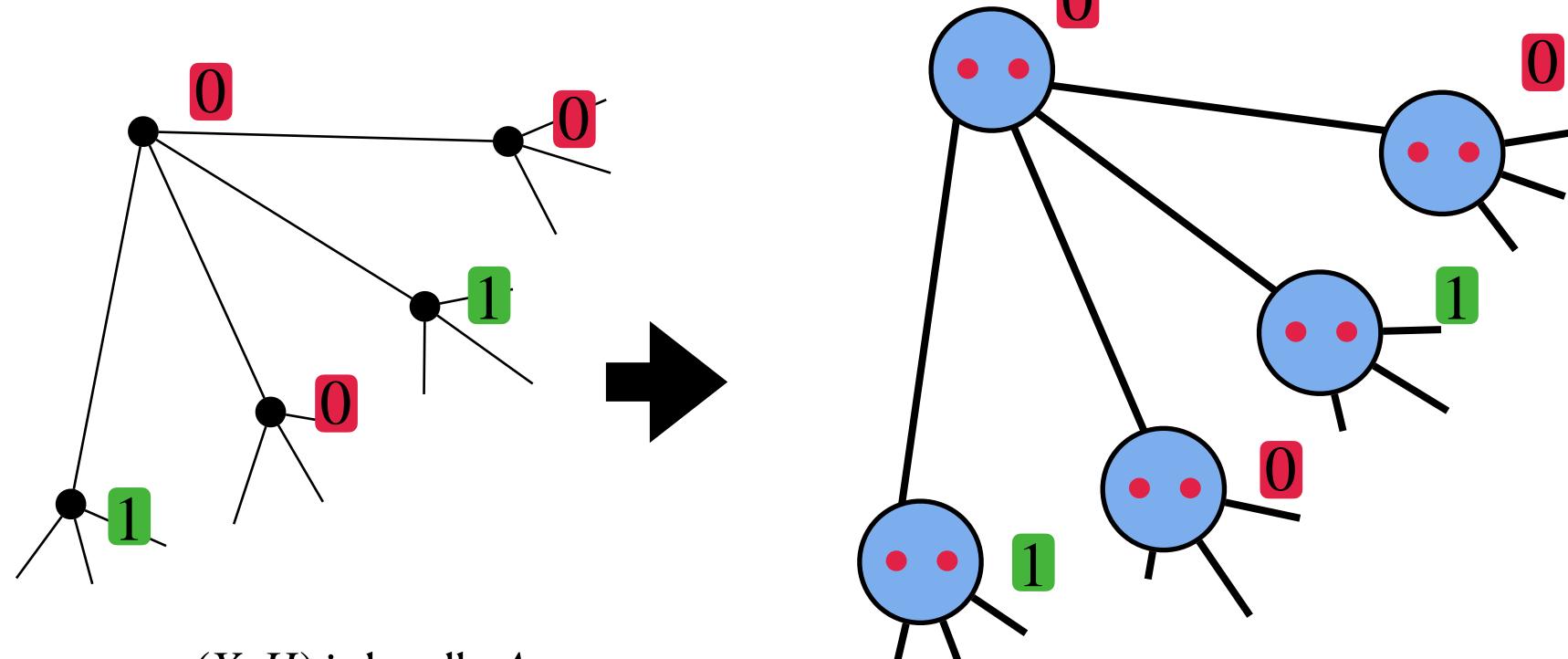
 $C = M \rtimes H$ 

- $H \leq \operatorname{Aut}(X)$  locally inducing  $A_4$ 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$  an *H*-module 2.

locally inducing  $V_0(\mathbb{F}_2^4)$ 



 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



(X, H) is locally- $A_4$ 

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs



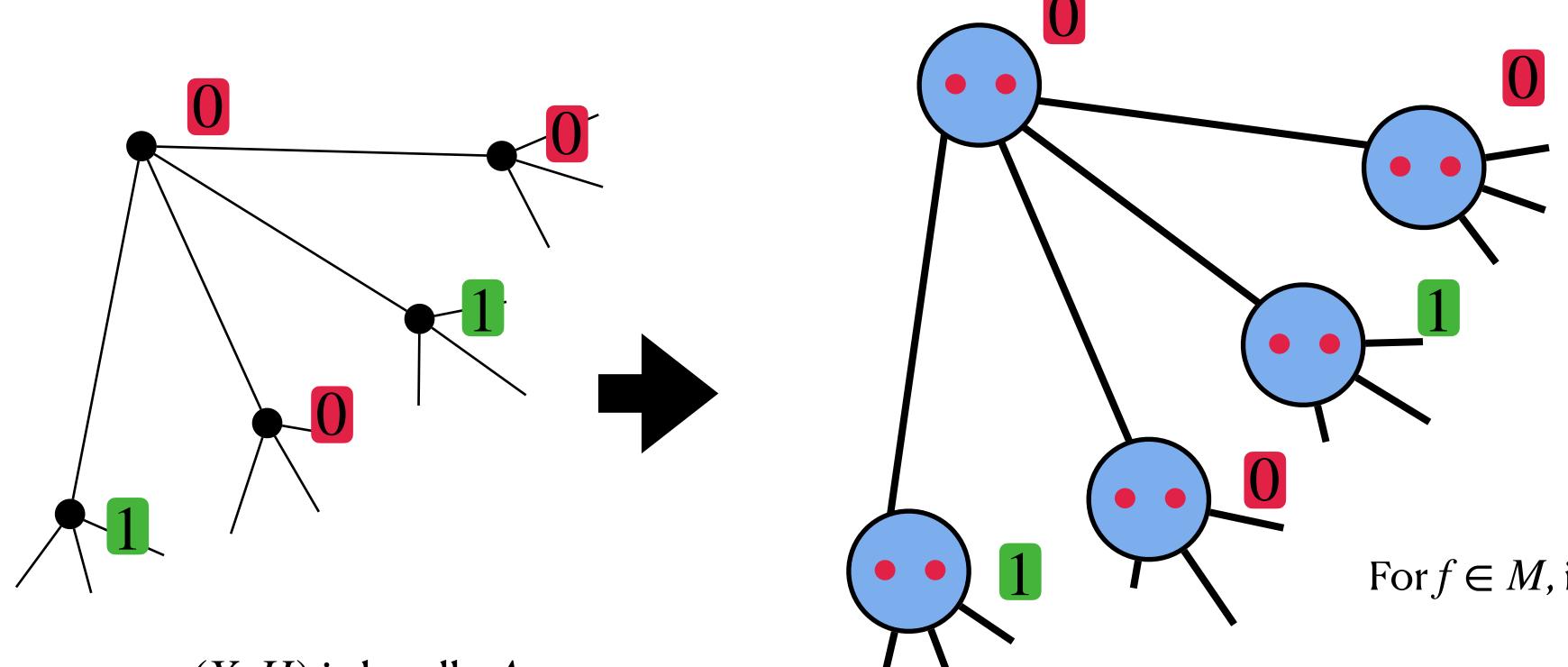
 $C = M \rtimes H$ 

- $H \leq \operatorname{Aut}(X)$  locally inducing  $A_4$ 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$  an *H*-module 2.

locally inducing  $V_0(\mathbb{F}_2^4)$ 



 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$  has a block system with four blocks of size two.



(X, H) is locally- $A_4$ 

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs

$$C = M \rtimes H$$

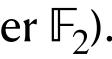
- $H \leq \operatorname{Aut}(X)$  locally inducing  $A_4$ 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$  an *H*-module 2.

locally inducing  $V_0(\mathbb{F}_2^4)$ 

0-around-0 property

For  $f \in M$ , if f(v) = 0, then  $\sum f(u) = 0$  (over  $\mathbb{F}_2$ ).  $u \sim_X v$ 





### 0-around-0 modules

 $X = \text{vertex-transitive graph}, A = \text{adjacency matrix of } X \text{ over a field } \mathbb{F}$ 

Aut(X)-modules  $M \leq \mathbb{F}^{V(X)}$  satisfying the 0-around-0 property

 $f(v) = 0 \Rightarrow (A)$ 

 $\lambda$ -eigenspaces of X

 $E_{\lambda}$  is the space of all functions  $f \in \mathbb{F}^{V(X)}$  such that

 $(Af)(v) = \lambda f(v), \forall v \in V(X)$ 

 $E_{\lambda}$  is a 0-around-0 module,  $\forall \lambda \in \mathbb{F}$ 

$$f(v) = \sum_{u \sim v} f(u) = 0$$

Theorem

The non-trivial eigenspaces  $E_{\lambda}$  of X are

precisely the maximal 0-around-0 modules

The same holds for general linear operators

 $A \colon \mathbb{F}^V \to \mathbb{F}^V$ , where *V* is a transitive *G*-set.



 $\mathscr{C} = V_0(\mathbb{F}^n) \rtimes L_1$  and  $(Y_m, C_m)$  is locally-*L* for all  $m \in \mathbb{N}$ 

### Construction $Y_m = X_m[\overline{K_a}]$ $C_m = \left\langle E_m, H_m \right\rangle = E_m \rtimes H_m$ $H_m \leq \operatorname{Aut}(X_m), E_m = E_{\lambda}(X_m) \text{ over } \mathbb{F}$

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$  pairs

### Conditions

1.  $(X_m, H_m)$  is locally- $L_1$ 

4. $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module



## ABC lemma

Potočnik, Spiga, Verret (2014)

- 1.  $A \ge B \ge C$
- 2. (X, B) is locally- $\mathscr{B}$ ,
- 3.  $|B_v| = t |C_v|$  with t depending only on  $\mathscr{C}$ .

 $X = \text{graph}, v \in V(X)$  with  $C \leq A \leq \text{Aut}(X)$  vertex-transitive groups of automorphisms

(X, C) is locally- $\mathscr{C}$  and (X, A) is locally- $\mathscr{A}$ 

### If C is normal in A, then for every $\mathscr{B}$ with $\mathscr{A} \geq \mathscr{B} \geq \mathscr{C}$ we can find $B \leq \operatorname{Aut}(X)$ such that:

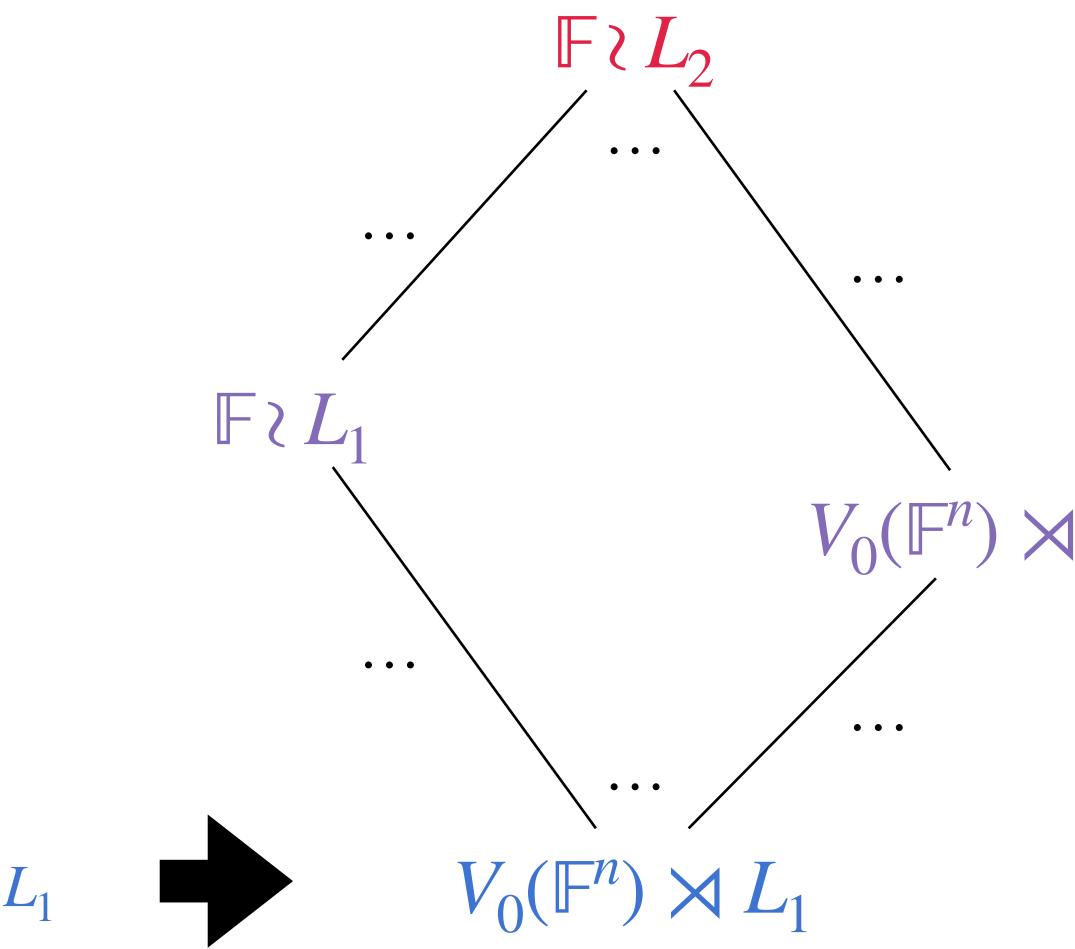
### You can get everything 'inbetween' A and C, and all stabilisers will have the same growth!!!



## Applying the ABC lemma

 $Y_m = X_m[\overline{K_q}]$ 

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$  with  $(Y_m, C_m)$  locally  $V_0(\mathbb{F}^n) \rtimes L_1$ 





### Locally-FZL2 pairs

### via lexicographic products

$$\mathscr{A} = \mathbb{F} \wr L_2 \text{ and } (Y_m, A_m)$$

### Construction $Y_m = X_m[\overline{K_q}]$ $A_m = \left\langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \right\rangle$ $G_m \leq \operatorname{Aut}(X_m), E_m = E_{\lambda}(X_m) \text{ over } \mathbb{F}$

) is locally-*L* for all  $m \in \mathbb{N}$ 

### Conditions

2.  $(X_m, G_m)$  is locally- $L_2$ 

6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  with  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ 

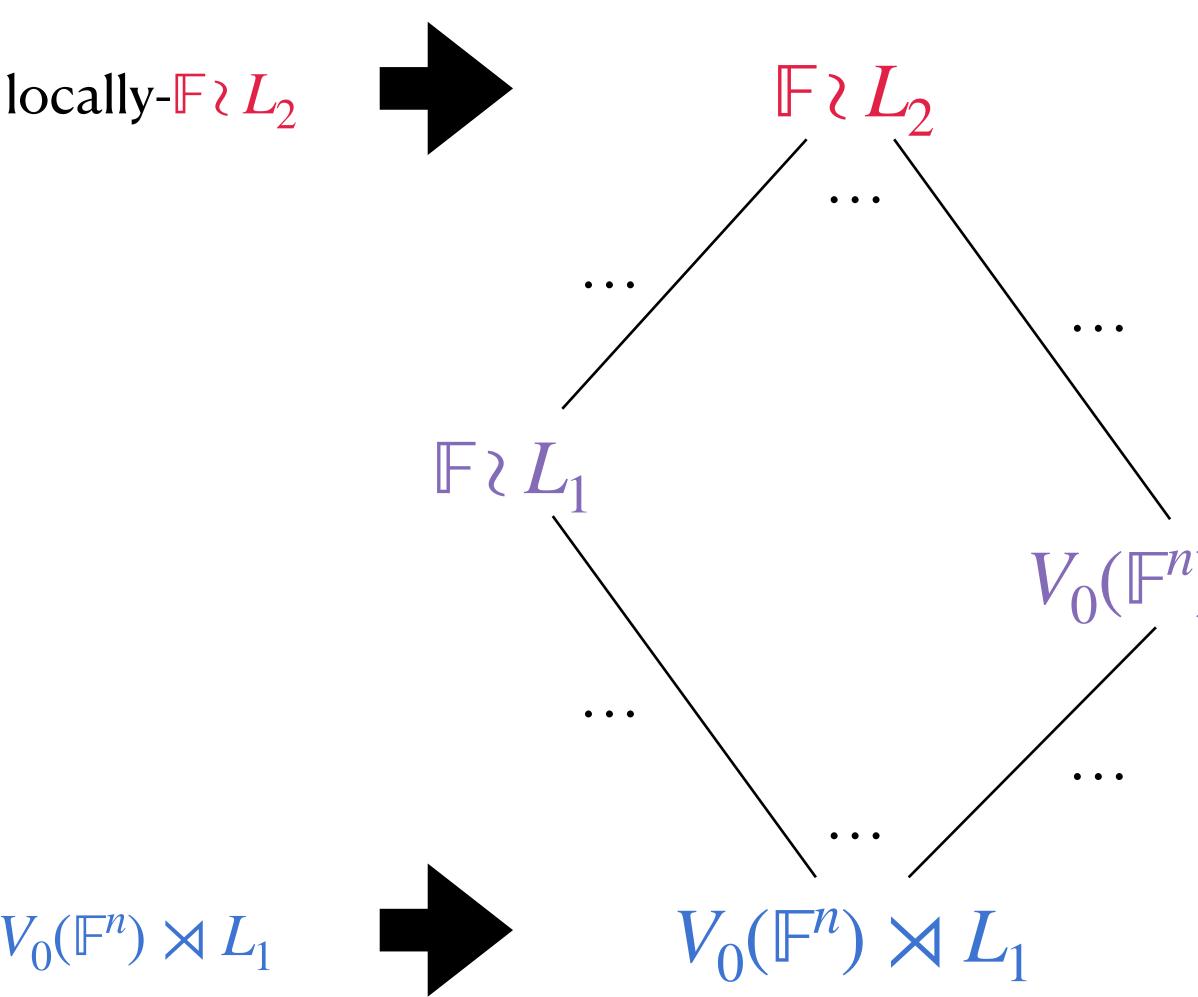


## Applying the ABC lemma

 $Y_m = X_m[\overline{K_q}]$ 

 $A_m = \langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \rangle \text{ with } (Y_m, A_m) \text{ locally-} \mathbb{F} \wr L_2$ 

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$  with  $(Y_m, B_m)$  locally  $V_0(\mathbb{F}^n) \rtimes L_1$ 









## Applying the ABC lemma

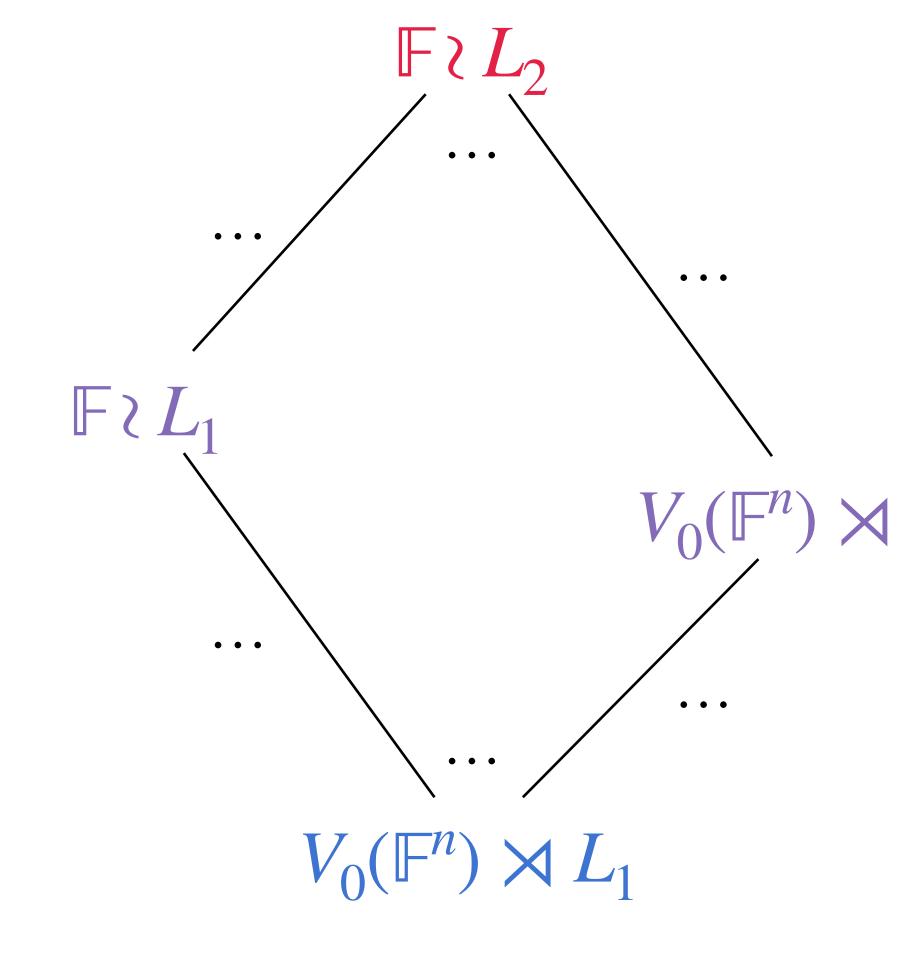
$$Y_m = X_m[\overline{K_q}]$$

 $A_m = \langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \rangle$  with  $(Y_m, A_m)$  locally- $\mathbb{F} \wr L_2$ 

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$  with  $(Y_m, B_m)$  locally- $V_0(\mathbb{F}^n) \rtimes L_1$ 



### Conditions 3. $H_m$ is normal in $G_m$ 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ with $f_m^x - f_m \in E_m, \forall x \in H_m$



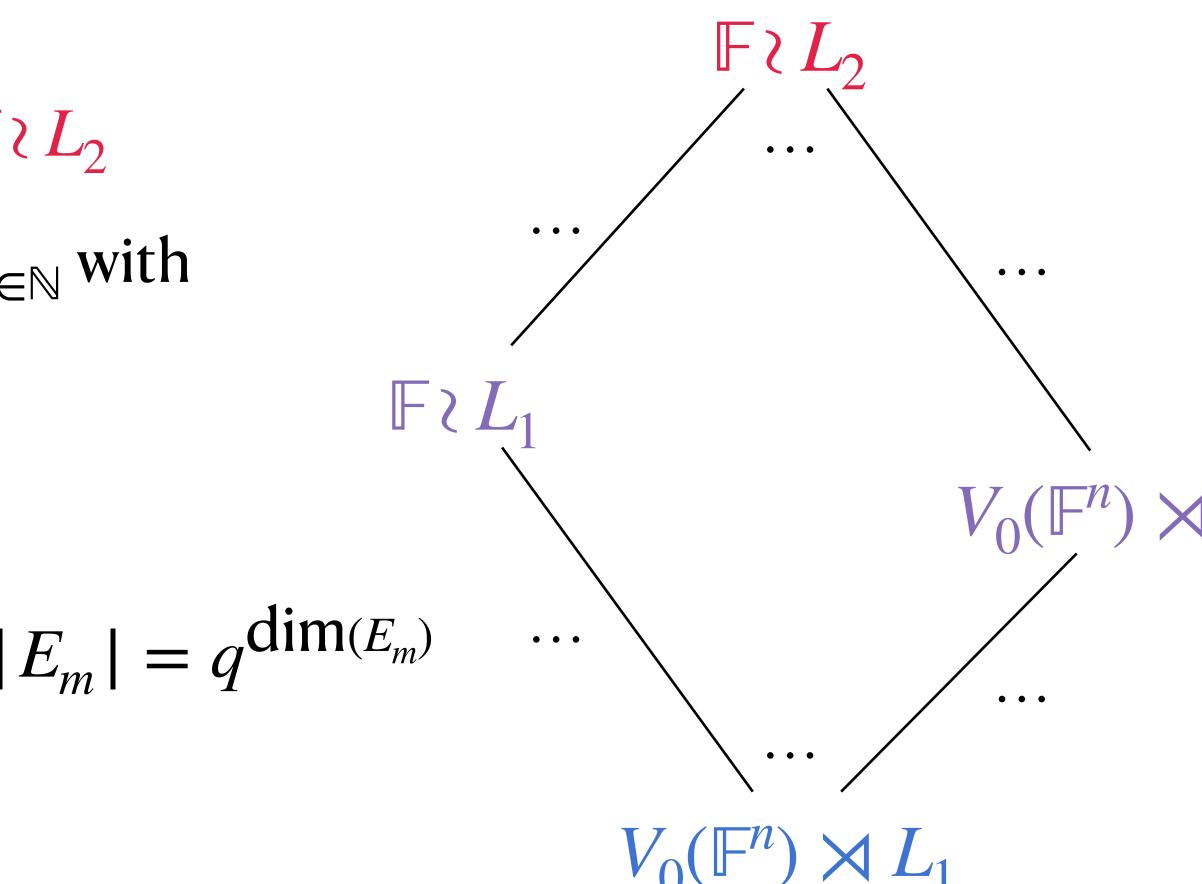


#### ABC Lemma:

### For all *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ we obtain locally-*L* pairs $\{(Y_m, B_m)\}_{m \in \mathbb{N}}$ with $|(B_m)_v| = t |(C_m)_v|$

### $|(B_m)_v| = t|(C_m)_v| = t|(E_m \rtimes H_m)_v| \ge |E_m| = q^{\dim(E_m)}$

 $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$ 



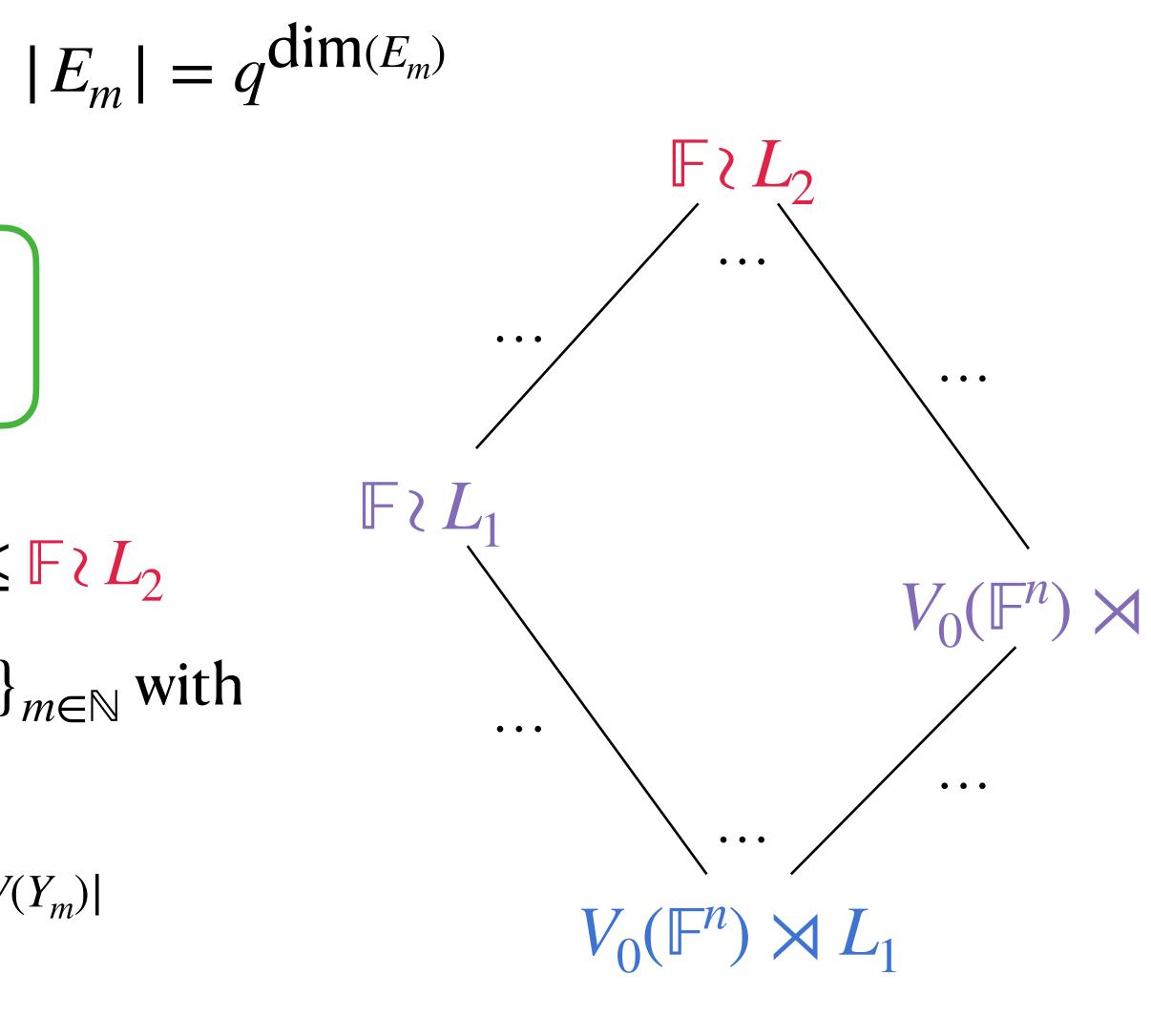


 $|(B_m)_v| = t|(C_m)_v| = t|(E_m \rtimes H_m)_v| \ge |E_m| = q^{\dim(E_m)}$ 

 $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$ 

### For all *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ we obtain locally-*L* pairs $\{(Y_m, B_m)\}_{m \in \mathbb{N}}$ with

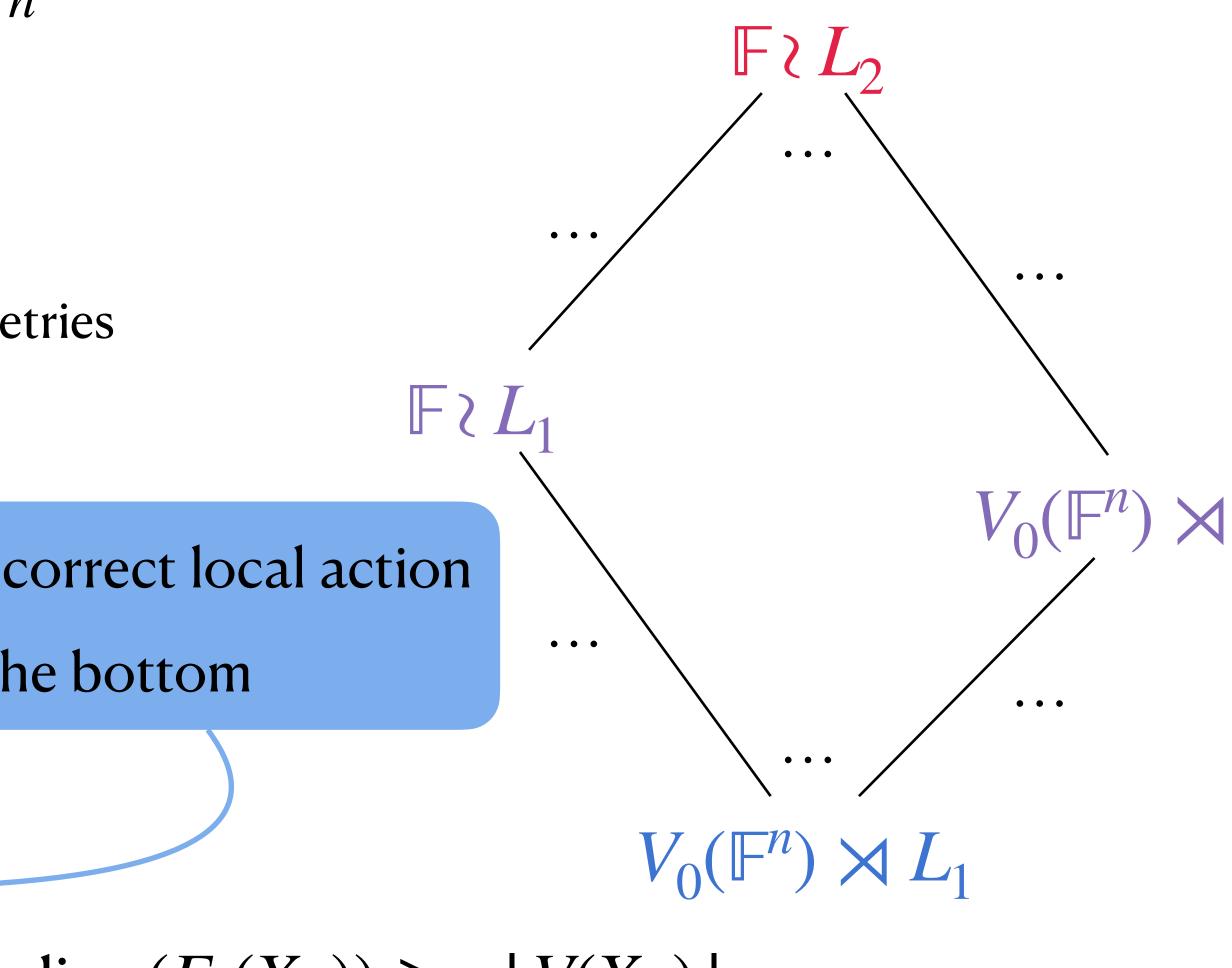
### $|(B_m)_v| \ge q^{\dim(E_m)} \ge (q^{c/q})^{|V(Y_m)|}$



#### **EXPONENTIAL GROWTH!**

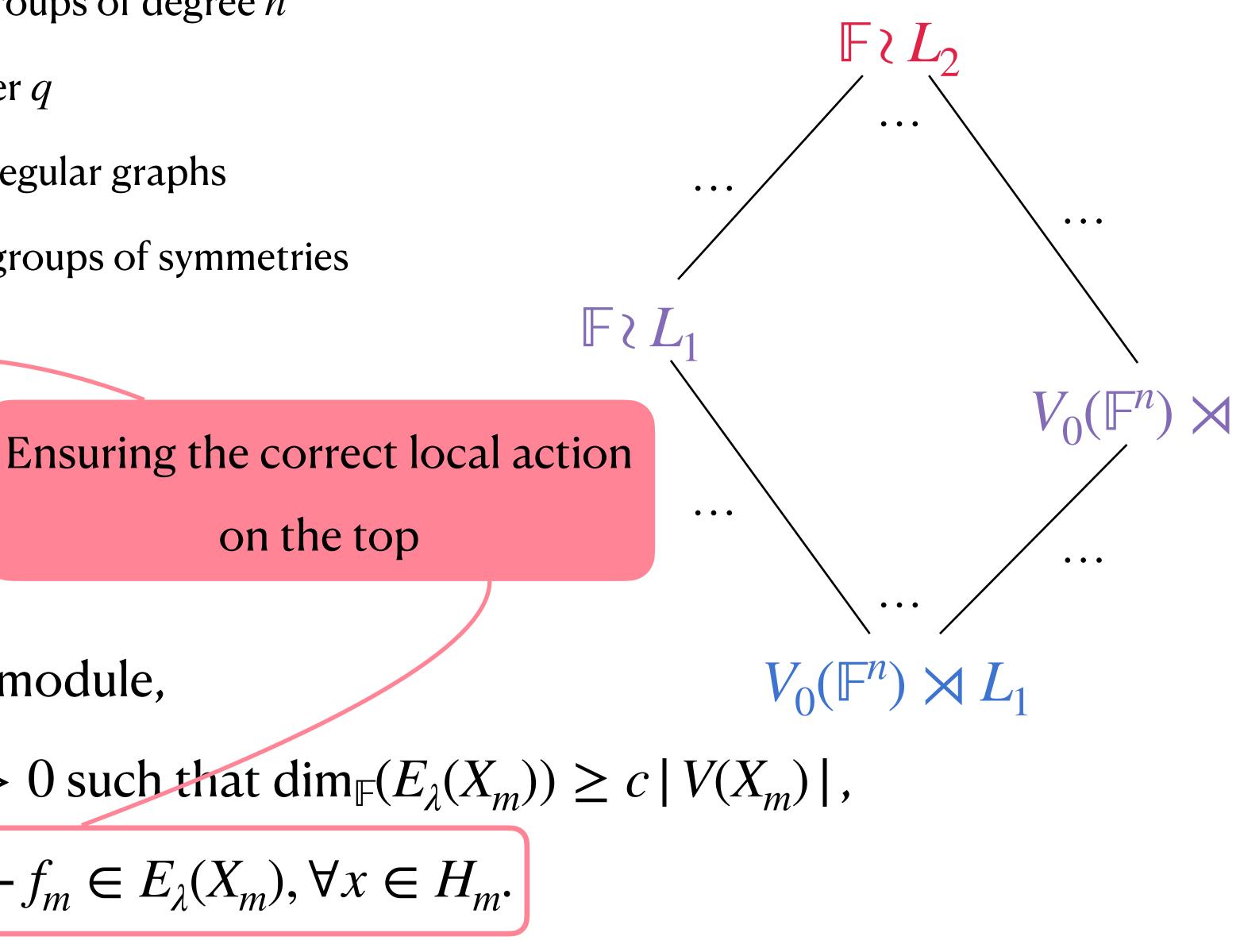


 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs • • •  $H_m, G_m \leq \operatorname{Aut}(X_m)$  = vertex-transitive groups of symmetries  $\mathbb{P} \subseteq L$  $(X_m, H_m)$  is locally- $L_1$ , Ensuring the correct local action 2.  $(X_m, G_m)$  is locally- $L_2$ , • • • on the bottom 3.  $H_m$  is normal in  $G_m$ , 4.  $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module,  $\exists \lambda \in \mathbb{F}$  and a constant c > 0 such that  $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$ , 6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .



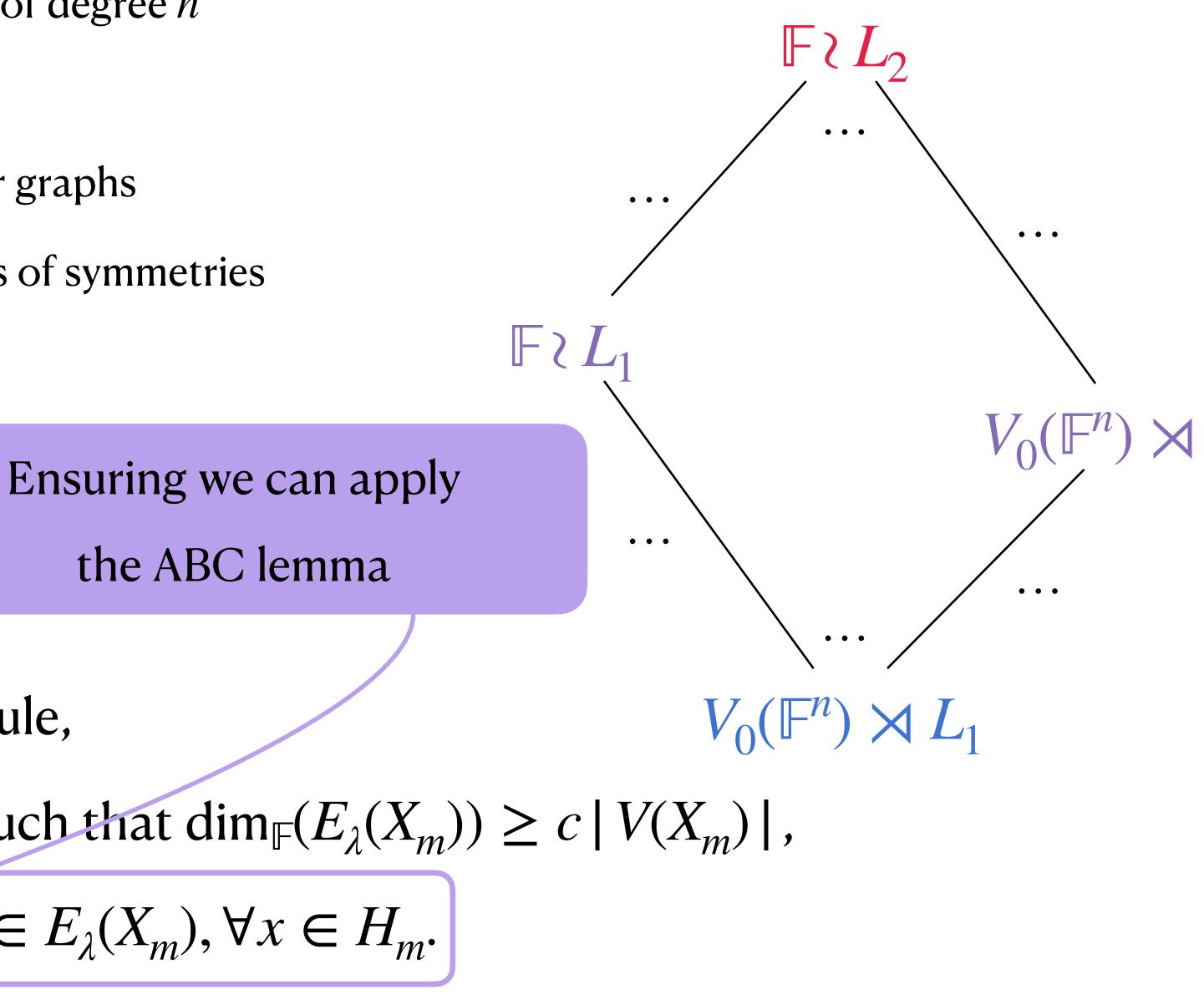


 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs  $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$  $(X_m, H_m)$  is locally- $L_1$ , 2.  $(X_m, G_m)$  is locally- $L_2$ , 3.  $H_m$  is normal in  $G_m$ , 4.  $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module,  $\exists \lambda \in \mathbb{F}$  and a constant c > 0 such that  $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c |V(X_m)|$ , 5. 6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .





 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs  $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$  $(X_m, H_m)$  is locally- $L_1$ , 2.  $(X_m, G_m)$  is locally- $L_2$ , 3.  $H_m$  is normal in  $G_m$ , 4.  $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module,  $\exists \lambda \in \mathbb{F}$  and a constant c > 0 such that  $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c |V(X_m)|$ , 5. 6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .



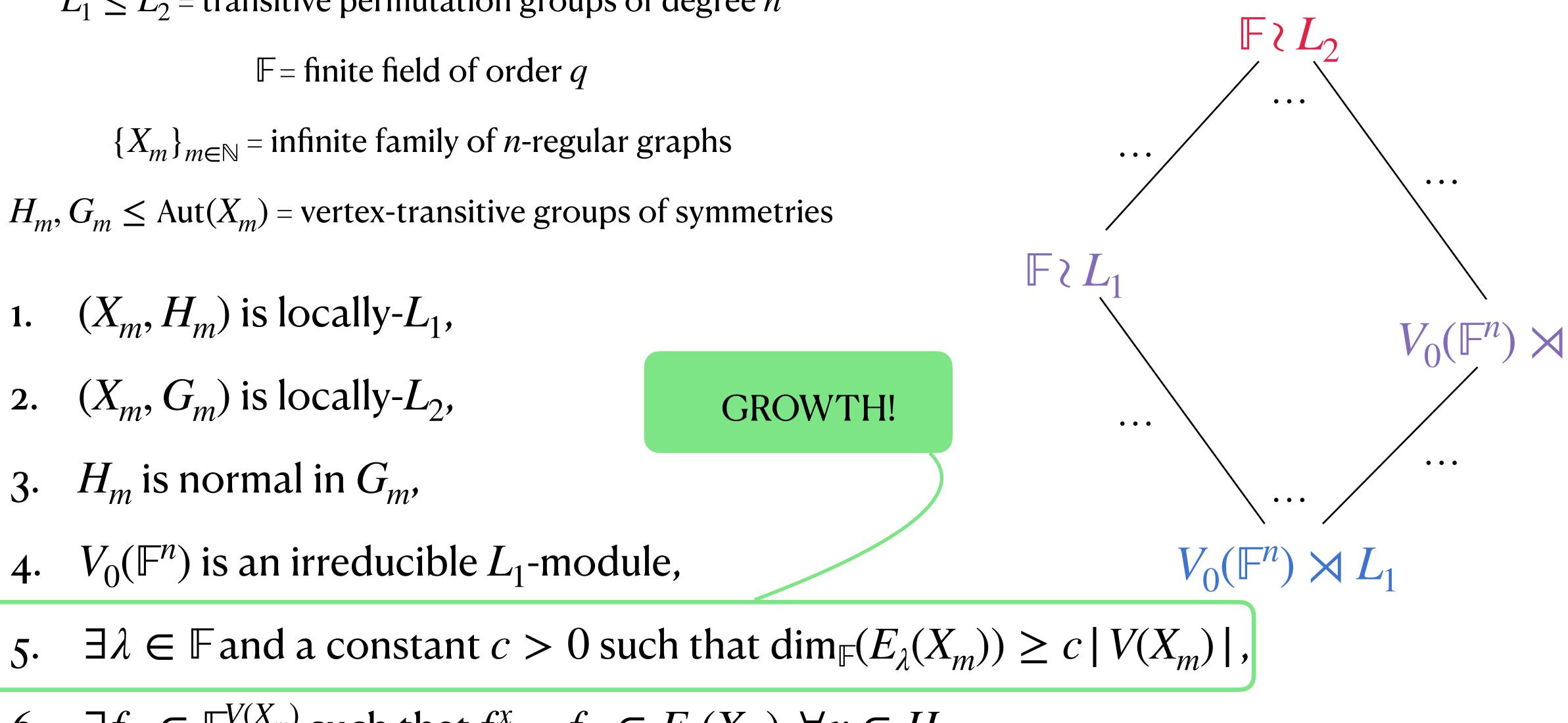


 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q ${X_m}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs  $(X_m, H_m)$  is locally- $L_1$ ,

2. 
$$(X_m, G_m)$$
 is locally- $L_2$ ,

3. 
$$H_m$$
 is normal in  $G_m$ ,

| ( |   | ١ |
|---|---|---|
|   | J |   |

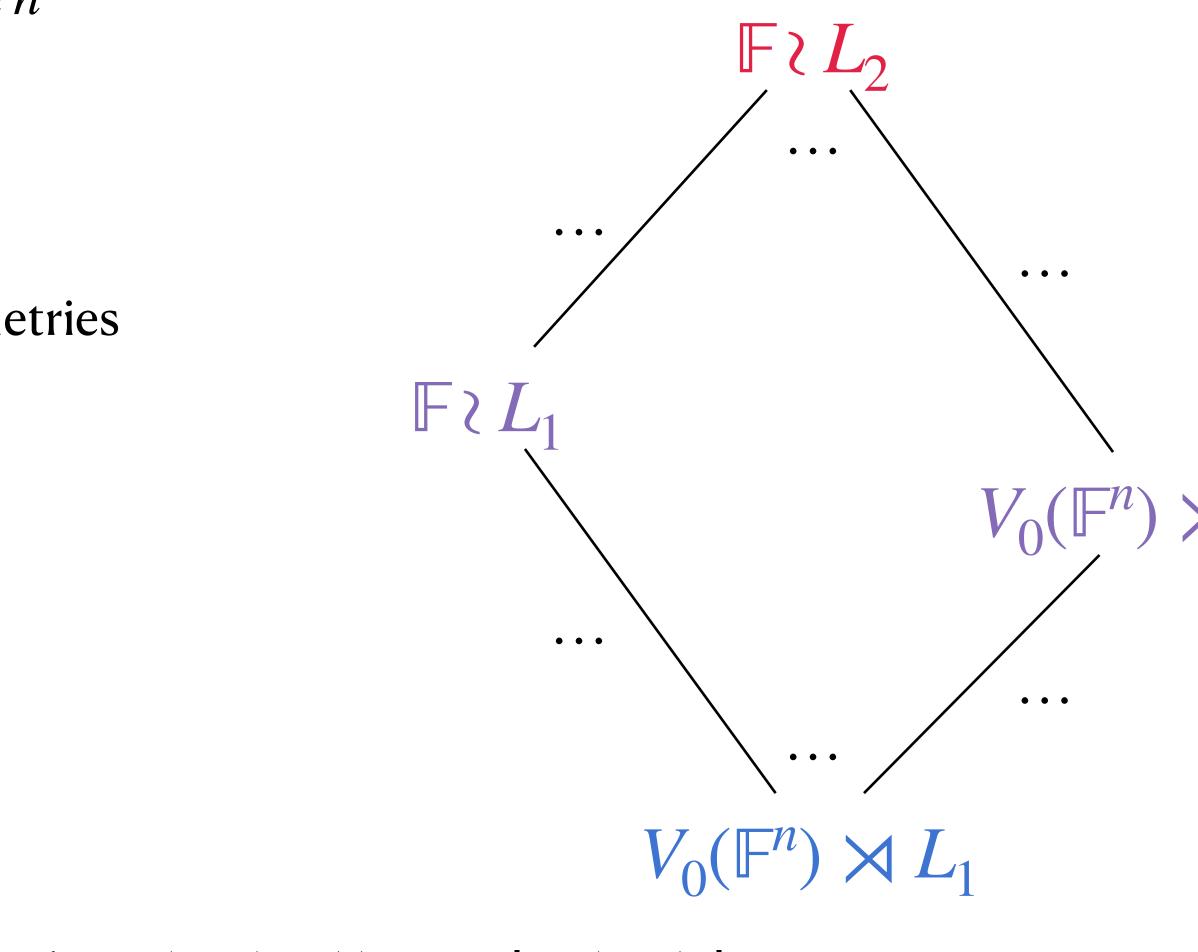


6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .



 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs  $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$ 

- $(X_m, H_m)$  is locally- $L_1$ ,
- 2.  $(X_m, G_m)$  is locally- $L_2$ ,
- 3.  $H_m$  is normal in  $G_m$ ,
- 4.  $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module,
- $\exists \lambda \in \mathbb{F}$  and a constant c > 0 such that  $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$ , 5.
- 6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .



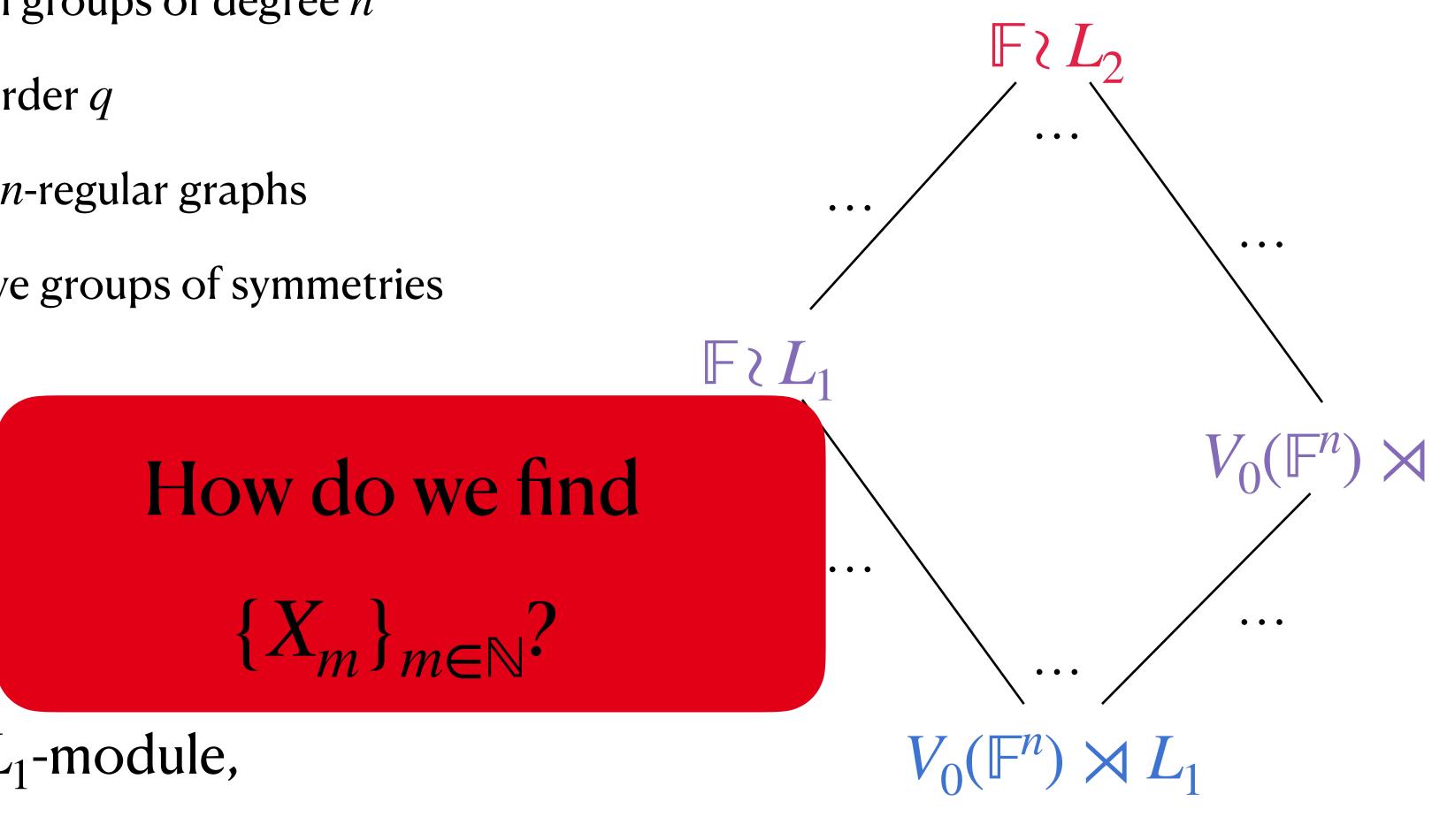
Every group *L* with  $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$  has exponential graph growth.





 $L_1 \leq L_2$  = transitive permutation groups of degree *n*  $\mathbb{F}$  = finite field of order q ${X_m}_{m \in \mathbb{N}}$  = infinite family of *n*-regular graphs  $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$ 

- $(X_m, H_m)$  is locally- $L_1$ ,
- 2.  $(X_m, G_m)$  is locally- $L_2$ ,
- 3.  $H_m$  is normal in  $G_m$ ,



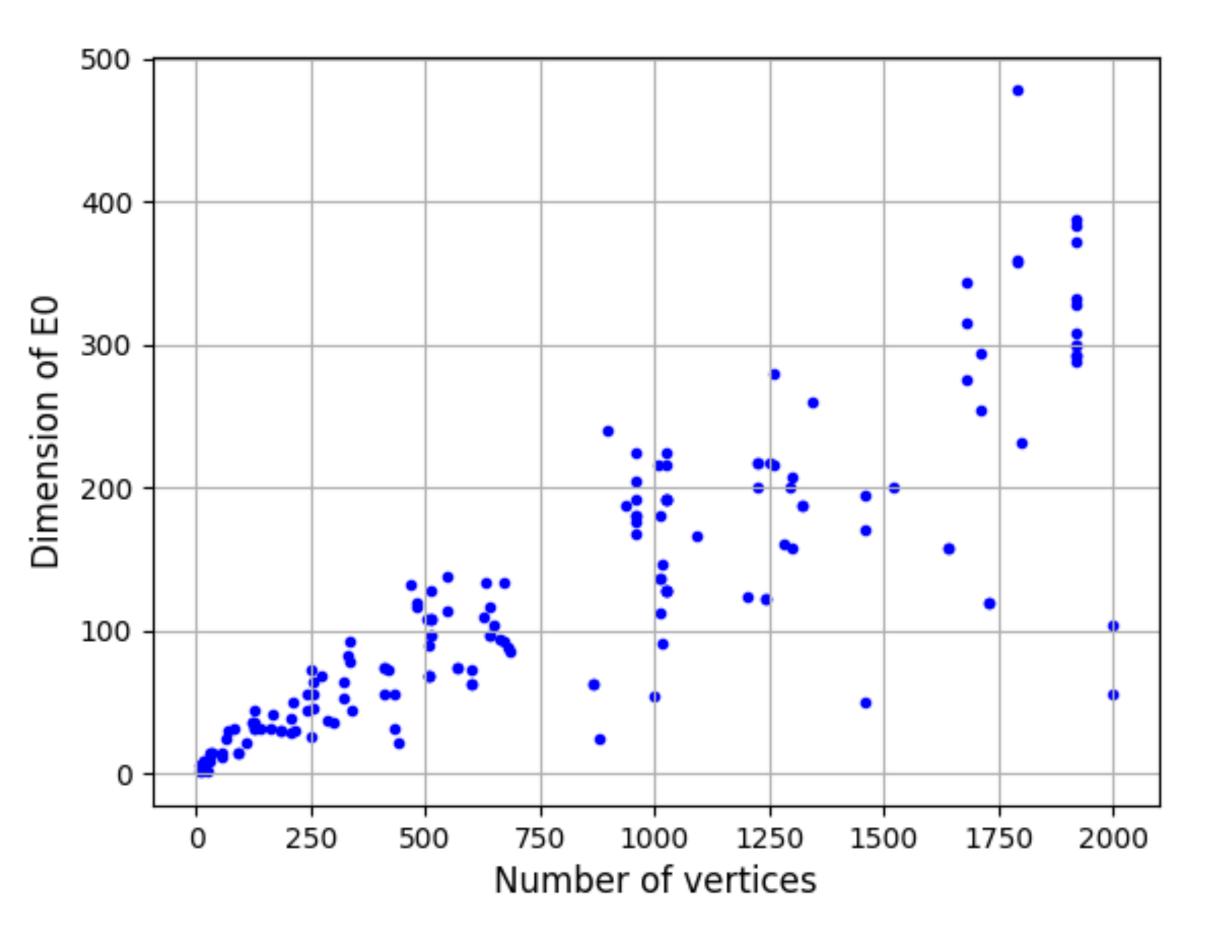
- 4.  $V_0(\mathbb{F}^n)$  is an irreducible  $L_1$ -module,
- $\exists \lambda \in \mathbb{F}$  and a constant c > 0 such that  $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$ , 5.
- 6.  $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x f_m \in E_{\lambda}(X_m), \forall x \in H_m$ .

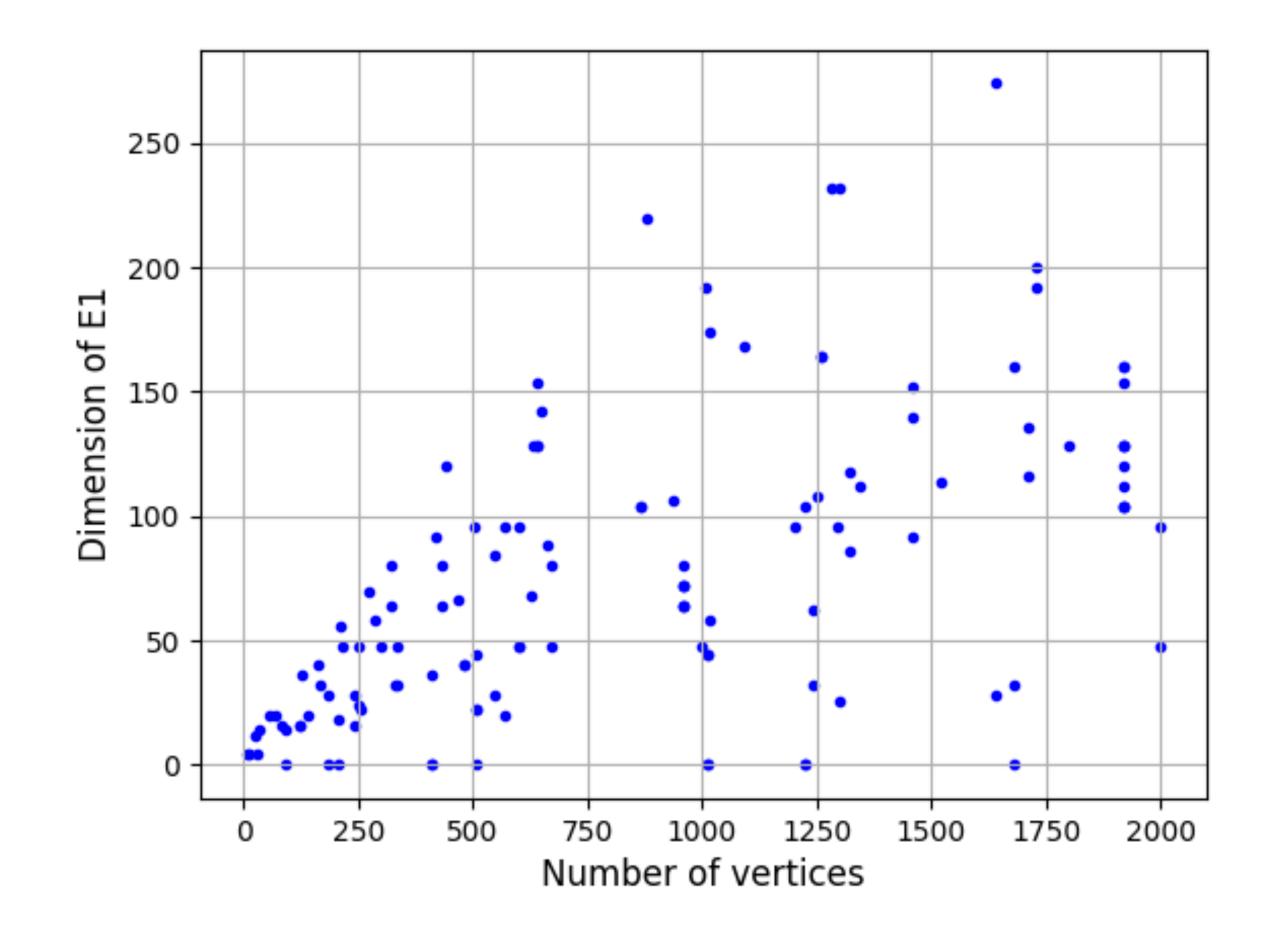
Every group *L* with  $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$  has exponential graph growth.



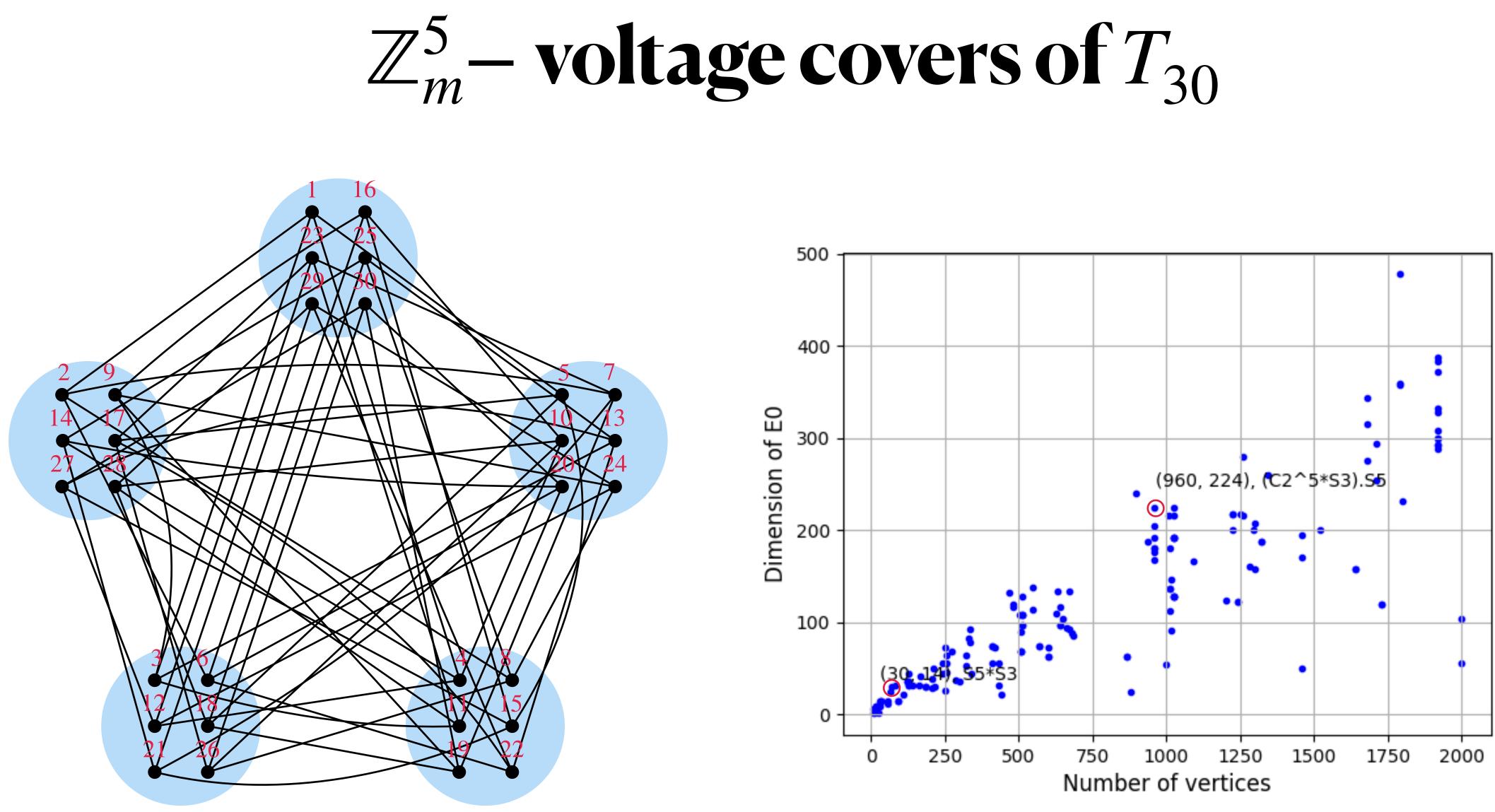
## F<sub>2</sub>-eigenspaces of 4-valent 2-arc-transitive graphs

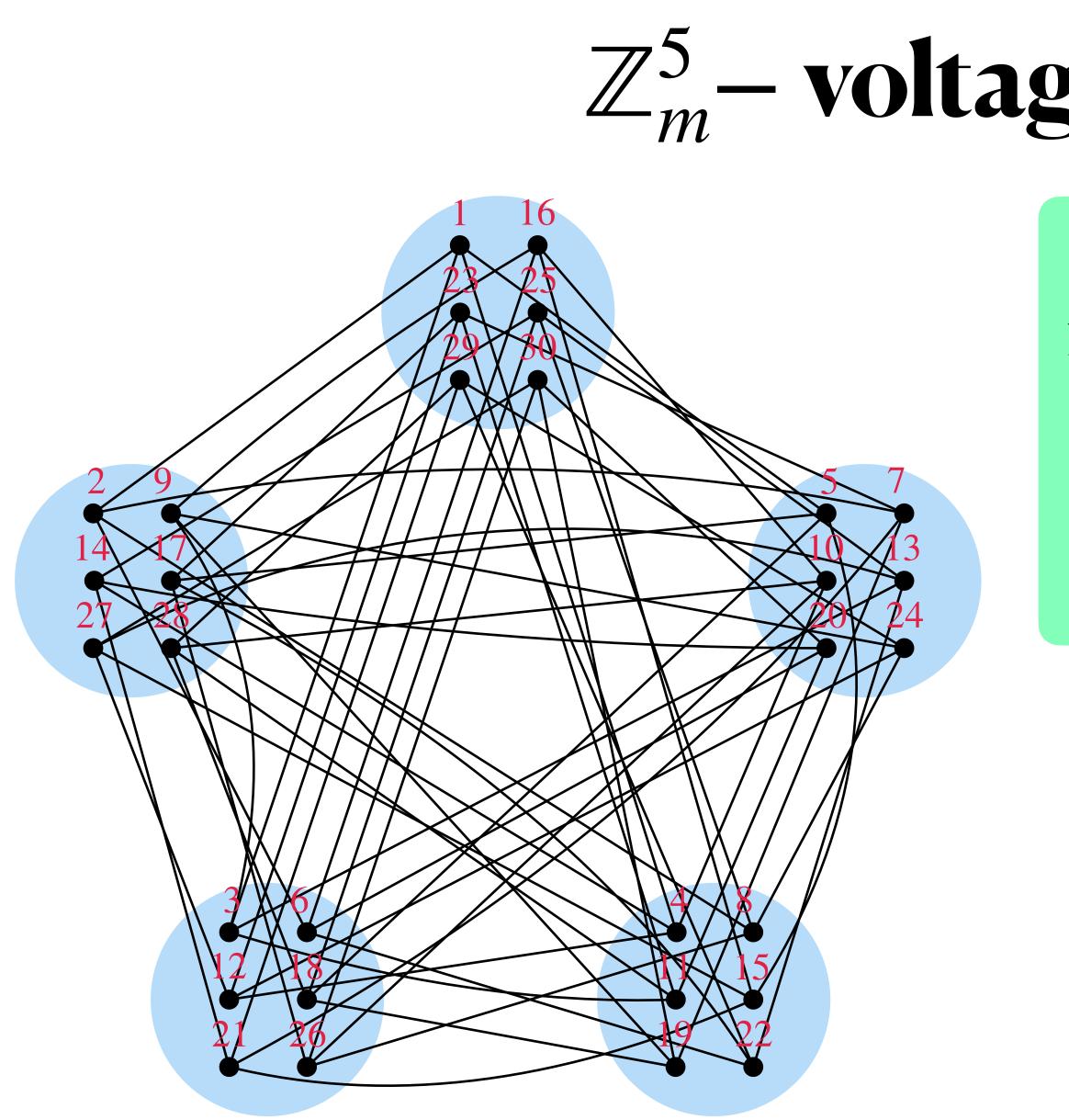
Database of all locally- $A_4$  and locally- $S_4$  graphs on at most 2000 vertices (Potočnik, 2008)











# $\mathbb{Z}_m^5$ – voltage covers of $T_{30}$

### Method

Malnič, Marušič and Potočnik (2004)

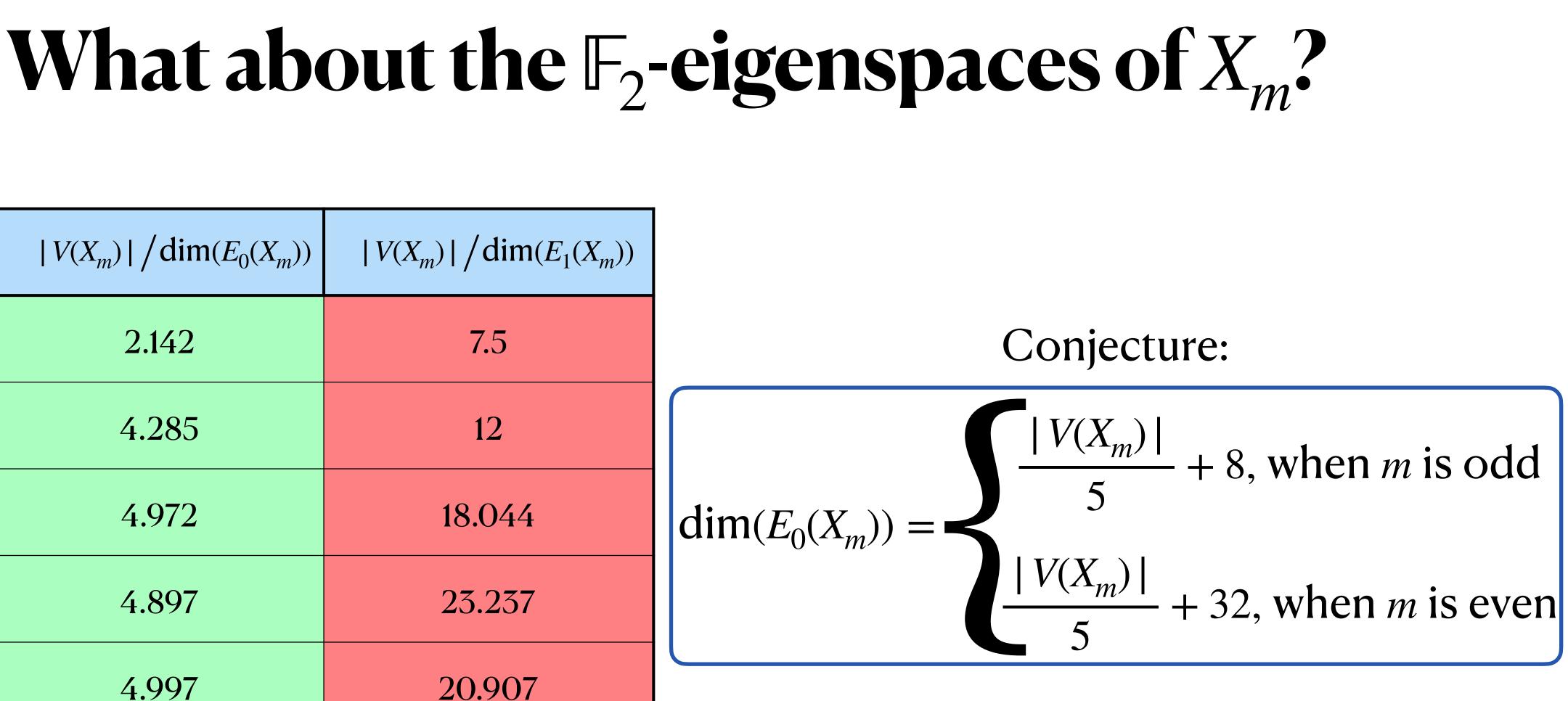
- $(T_{30}, H)$  is locally- $A_4$  and  $(T_{30}, G)$  is locally- $S_4$
- Basis of a 5-dimensional subspace  $U \le H_1(T_{30}, \mathbb{Z}_m)$ invariant under  $\operatorname{Aut}(T_{30}) \curvearrowright H_1(T_{30}, \mathbb{Z}_m)$

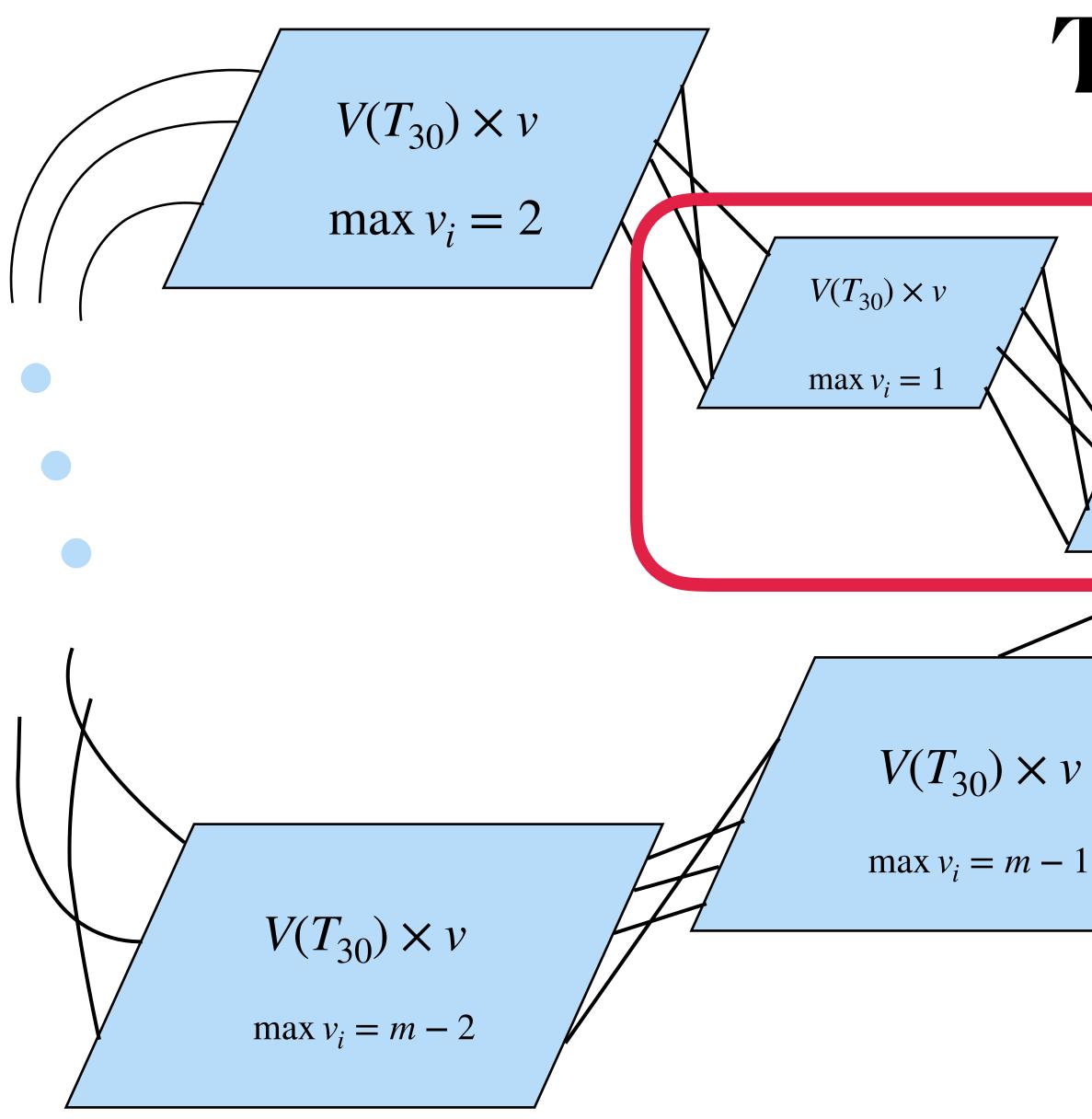
### Result

$$X_m = \mathbb{Z}_m^5 \text{-cover of } T_{30}$$
$$(X_m, H_m) \text{ is locally-} A_4 \text{ and } (X_m, G_m) \text{ is locally-} S_4$$
$$H_m \text{ is normal in } G_m$$



| т | $ V(X_m)  / \dim(E_0(X_m))$ | $ V(X_m) /\dim(E_1(X_m)) $ |
|---|-----------------------------|----------------------------|
| 1 | 2.142                       | 7.5                        |
| 2 | 4.285                       | 12                         |
| 3 | 4.972                       | 18.044                     |
| 4 | 4.897                       | 23.237                     |
| 5 | 4.997                       | 20.907                     |
| 6 | 4.996                       | 35.132                     |





# The universal eigenvector

 $V(T_{30}) \times 0$ 

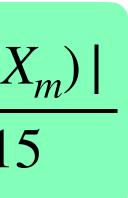
Using MAGMA we obtain:

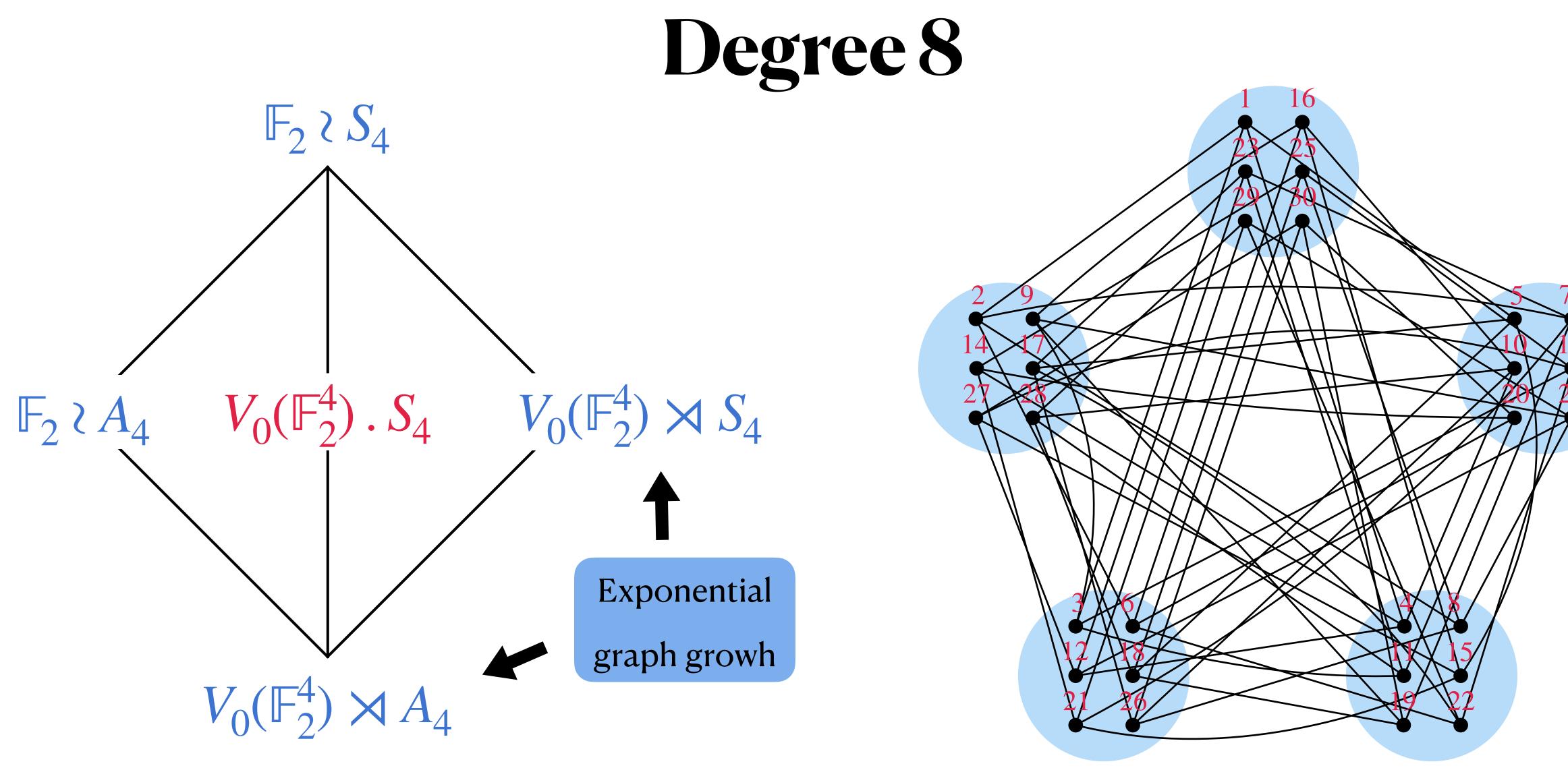
x = 0-eigenvector of  $X_m$  with support of size 15 located in this subset





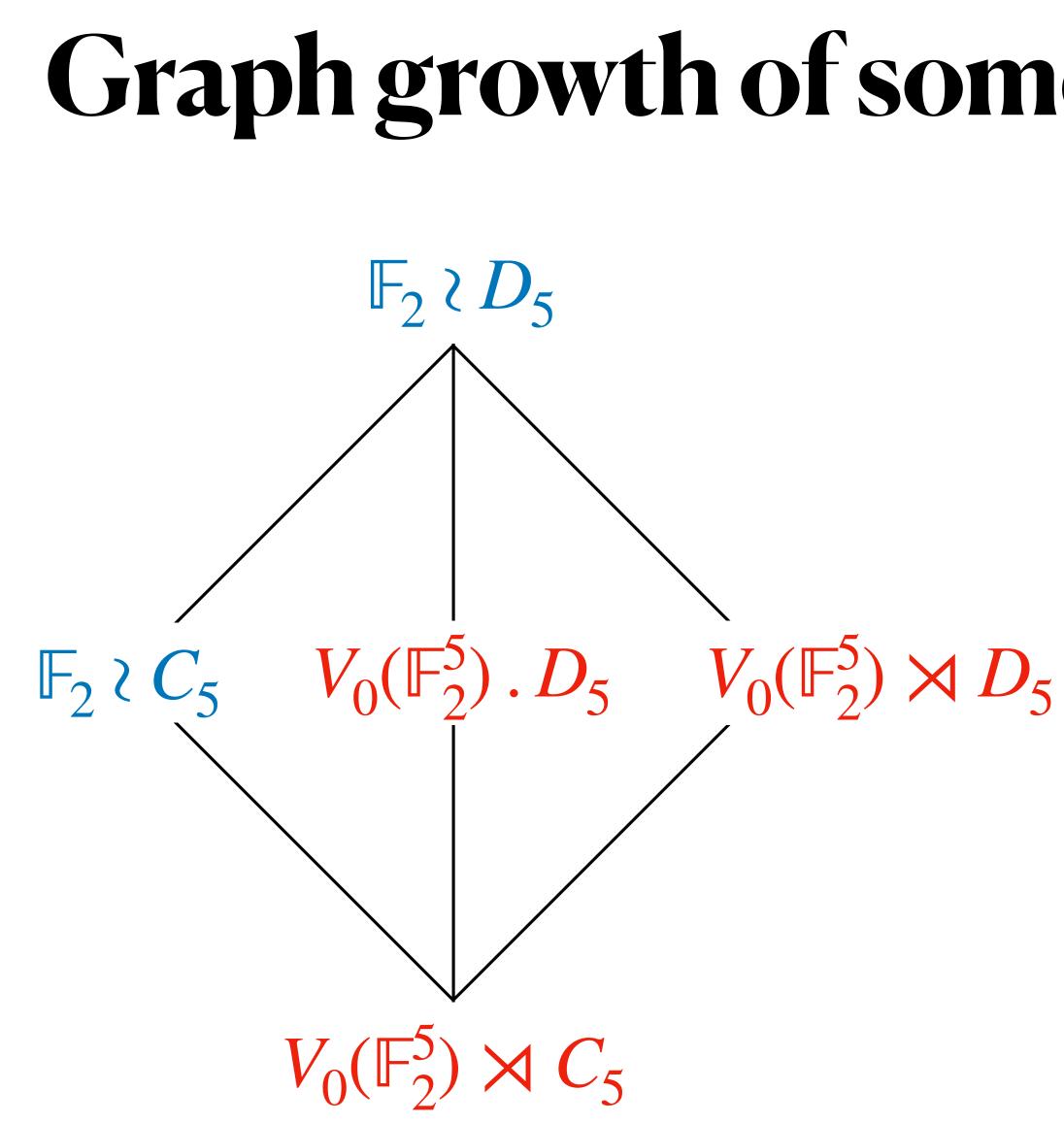




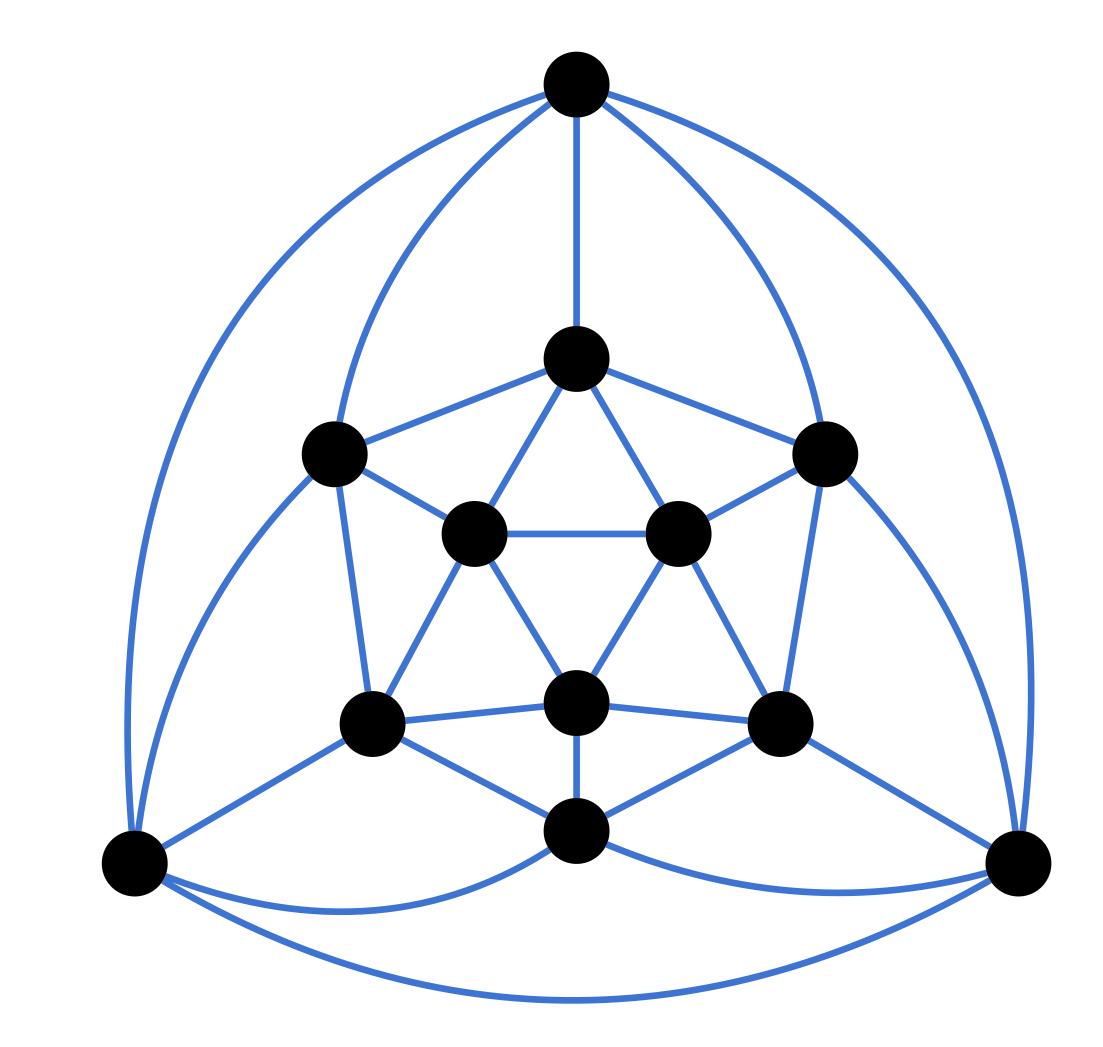


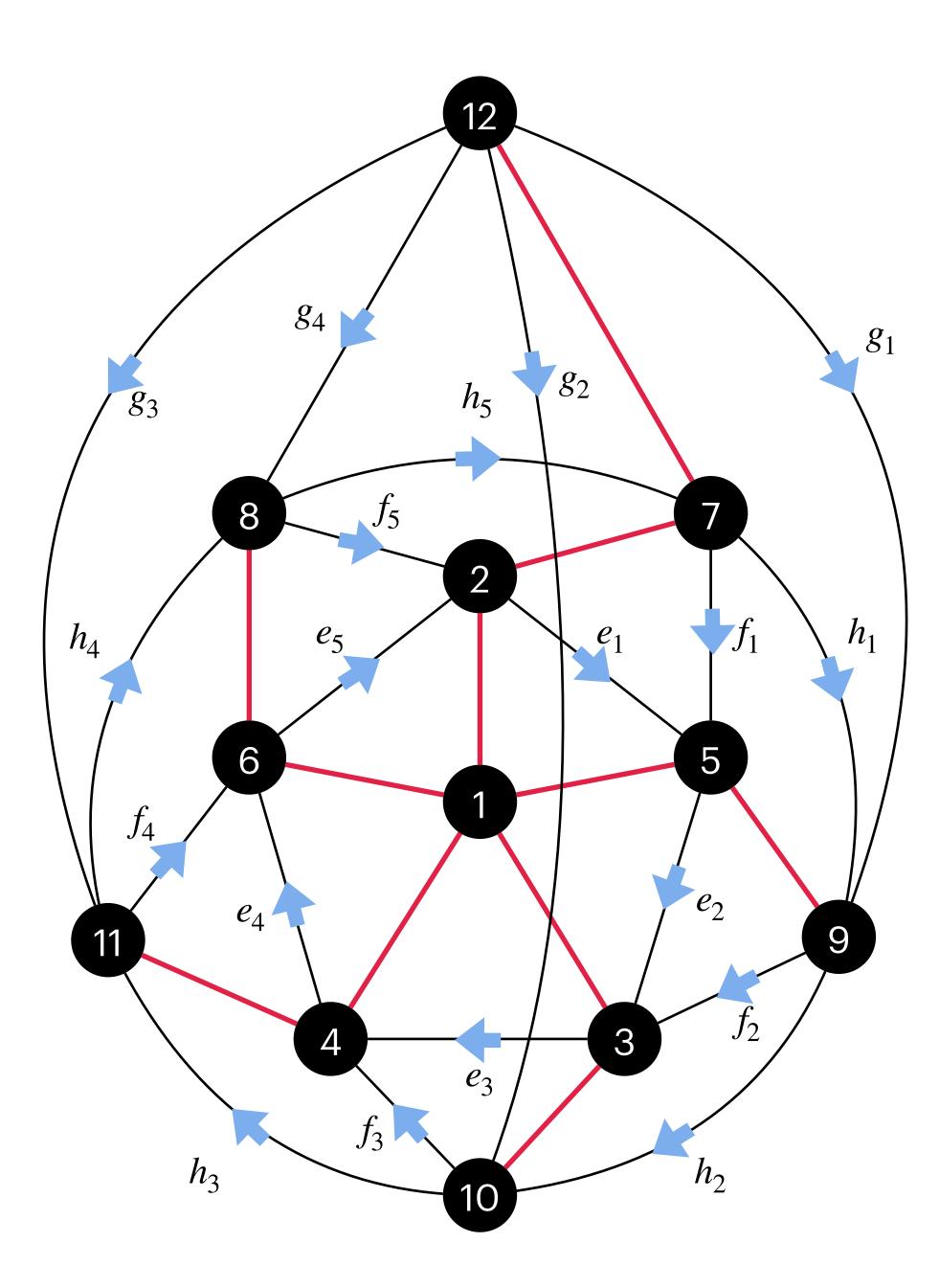
 $\exists f_m \in \mathbb{F}^{V(X_m)}$  such that  $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$ 





# Graph growth of some groups of degree 10







### Method

Malnič, Marušič and Potočnik (2004)

•  $(\mathbb{I}, H)$  is locally- $C_5$  and  $(\mathbb{I}, G)$  is locally- $D_5$  with H normal in G

Basis of a 4-dimensional subspace  $U \le H_1(\mathbb{I}, \mathbb{Z}_m)$  invariant under Aut( $\mathbb{I}$ )  $\curvearrowright H_1(\mathbb{I}, \mathbb{Z}_m)$ 

### Result

$$I_m = \mathbb{Z}_m^4 \text{-cover of } \mathbb{I}$$

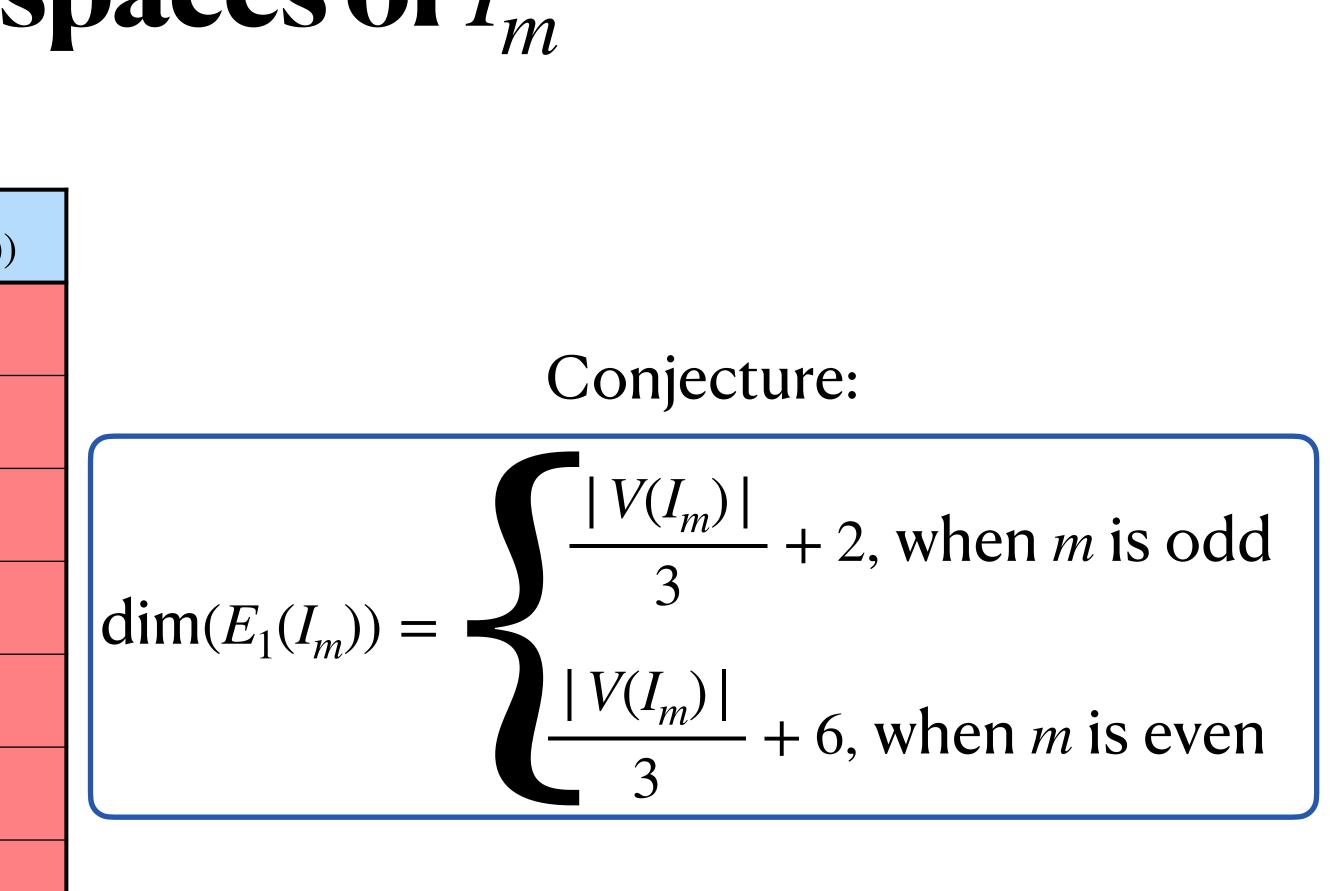
 $(I_m, H_m)$  is locally- $C_5$  and  $(I_m, G_m)$  is locally- $D_5$ 

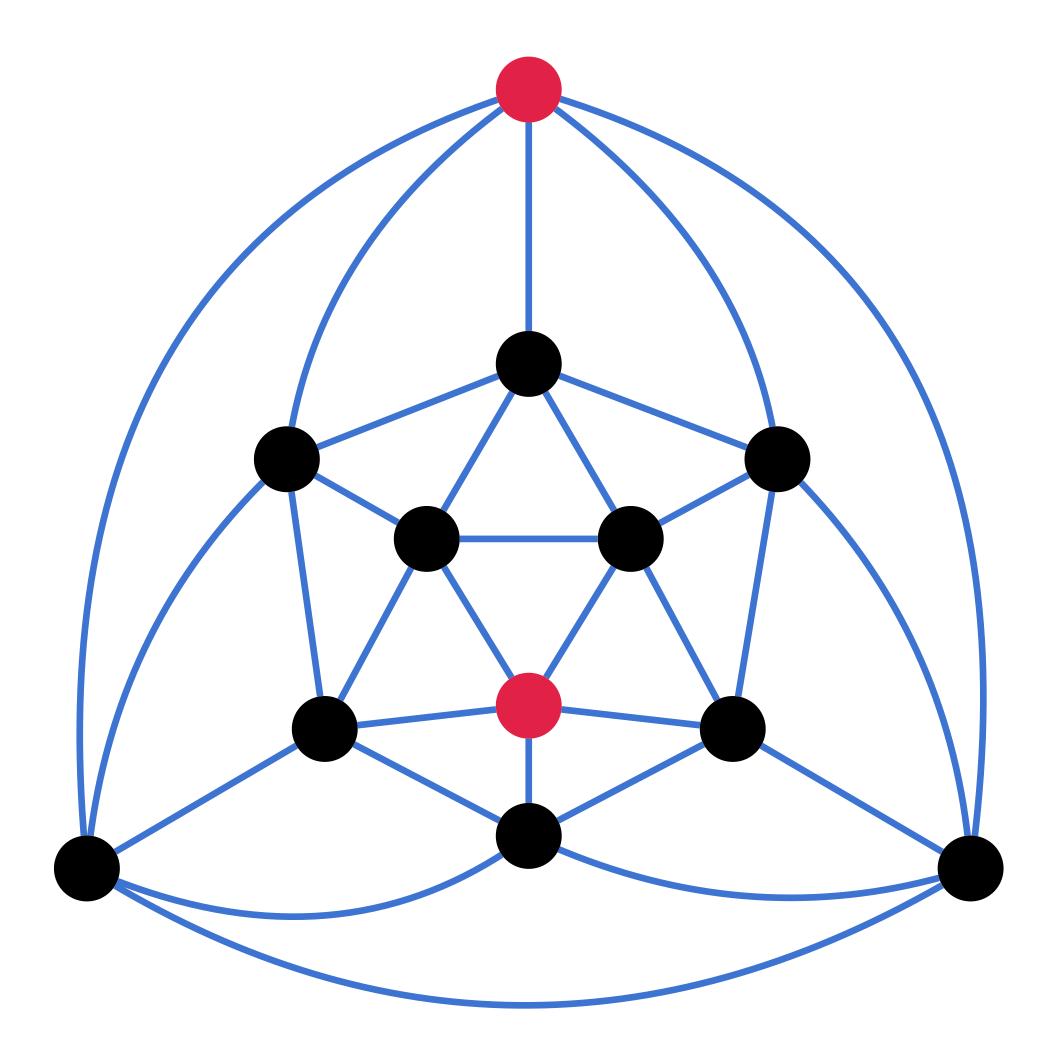
 $H_m$  is normal in  $G_m$ 



# $F_2$ -eigenspaces of $I_m$

| т | $ V(I_m)  / \dim(E_0(I_m))$ | $ V(I_m) /\dim(E_1(I_m))$ |
|---|-----------------------------|---------------------------|
| 1 | $\infty$                    | 2                         |
| 2 | $\infty$                    | 2.742                     |
| 3 | 12.15                       | 2.981                     |
| 4 | $\infty$                    | 2.982                     |
| 5 | 46.875                      | 2.997                     |
| 6 | 27.771                      | 2.996                     |
| 7 | 30.012                      | 2.999                     |
| 8 | $\infty$                    | 2.998                     |

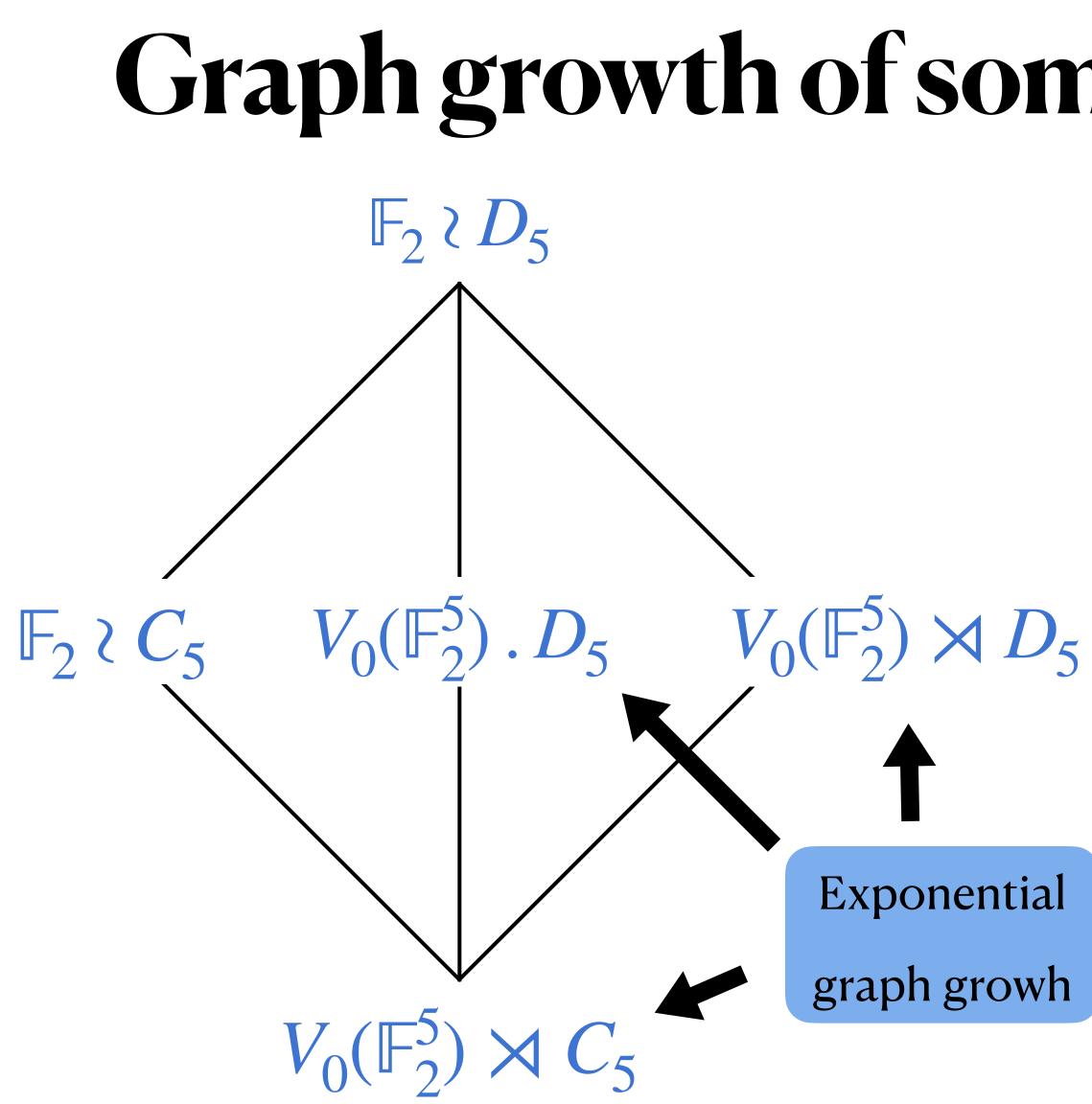




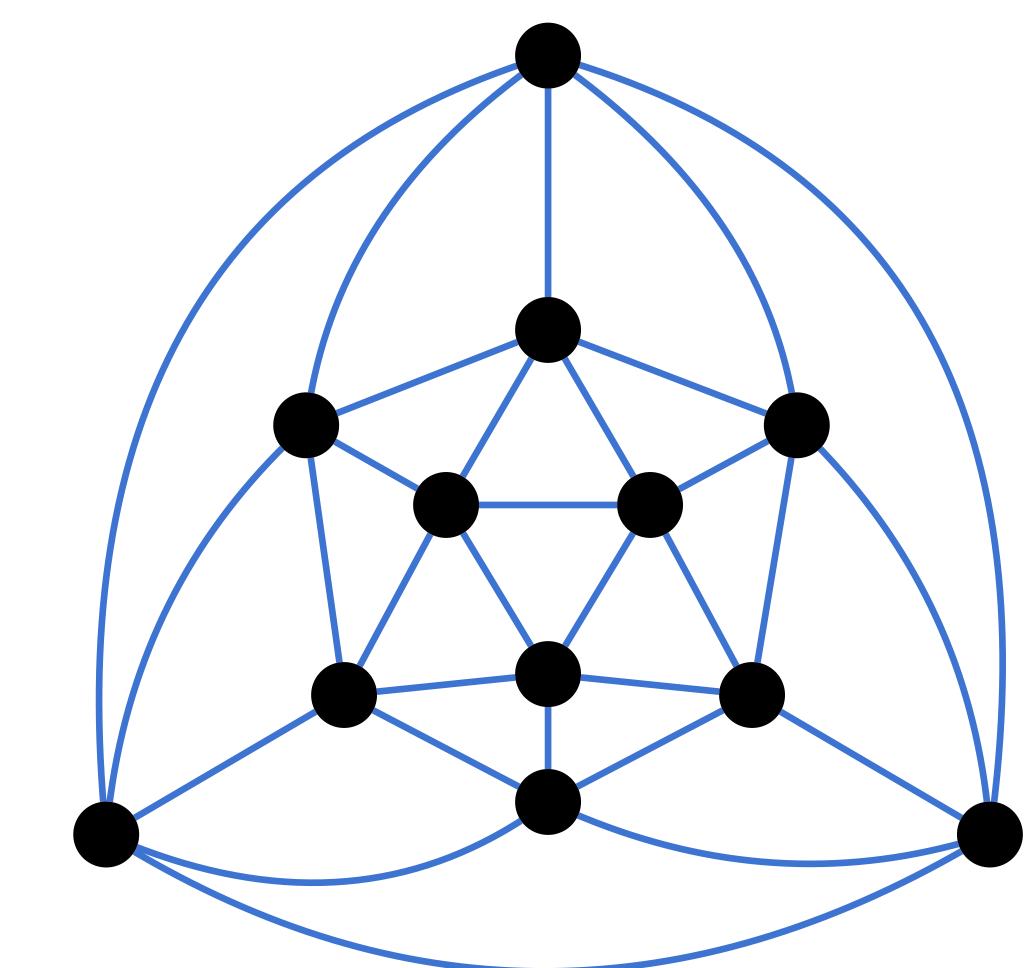
### Result

$$\begin{split} I_m &= \mathbb{Z}_m^4 \text{-cover of } \mathbb{I} \\ (I_m, H_m) \text{ is locally-} C_5 \text{ and } (I_m, G_m) \text{ is locally-} D_5 \\ H_m \text{ is normal in } G_m \\ \dim_{\mathbb{F}_2}(E_1(I_m)) &\geq \frac{|V(I_m)|}{12} \\ f_m \text{ is the lift of } f \in \mathbb{F}_2^{V(\mathbb{I})} \text{ such that } f^x - f \in E_1(\mathbb{I}), x \in H \end{split}$$





# Graph growth of some groups of degree 10



# Work in progress

# **Recent developments: Twisting Vectors**

### $X = \text{graph}, G \leq \text{Aut}(X)$ is transitive on vertices $\mathbb{F} = \text{field}, \lambda \in \mathbb{F}$

### $f \in \mathbb{F}^{V(X)}$ such that

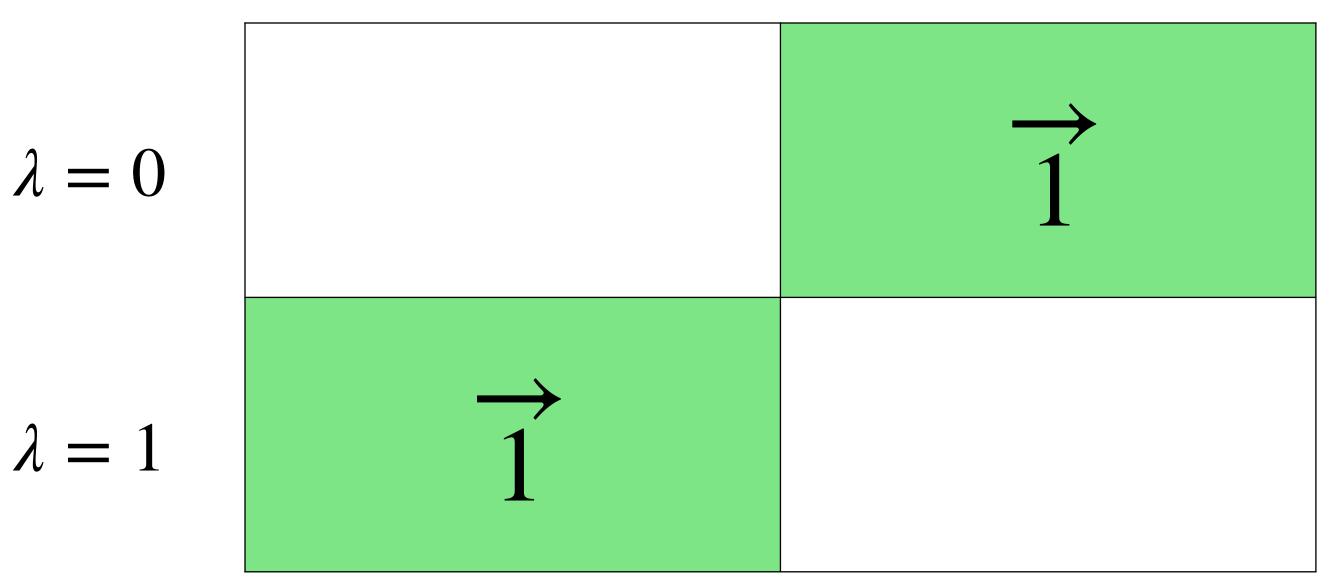
### Proposition

$$f^{x} - f \in E_{\lambda}(X), \forall x \in G$$

A twisting vector exists if and only if the following equation has a solution  $(A(X) - \lambda I)x = \overrightarrow{1}$ 

# Recent developments: Twisting Vectors (over $\mathbb{F}_2$ )

### even valency



- A twisting vector exists if and only if the following equation has a solution
  - $(A(X) \lambda I)x = \overrightarrow{1}$

### odd valency

# Recent developments: Twisting Vectors (over $\mathbb{F}_2$ )

even valency

May not exist!

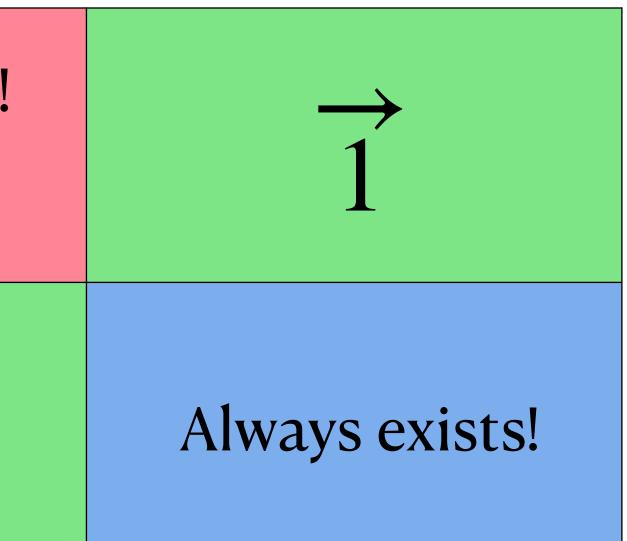
(recall  $T_{30}$ )

 $\lambda = 0$ 

 $\lambda = 1$ 

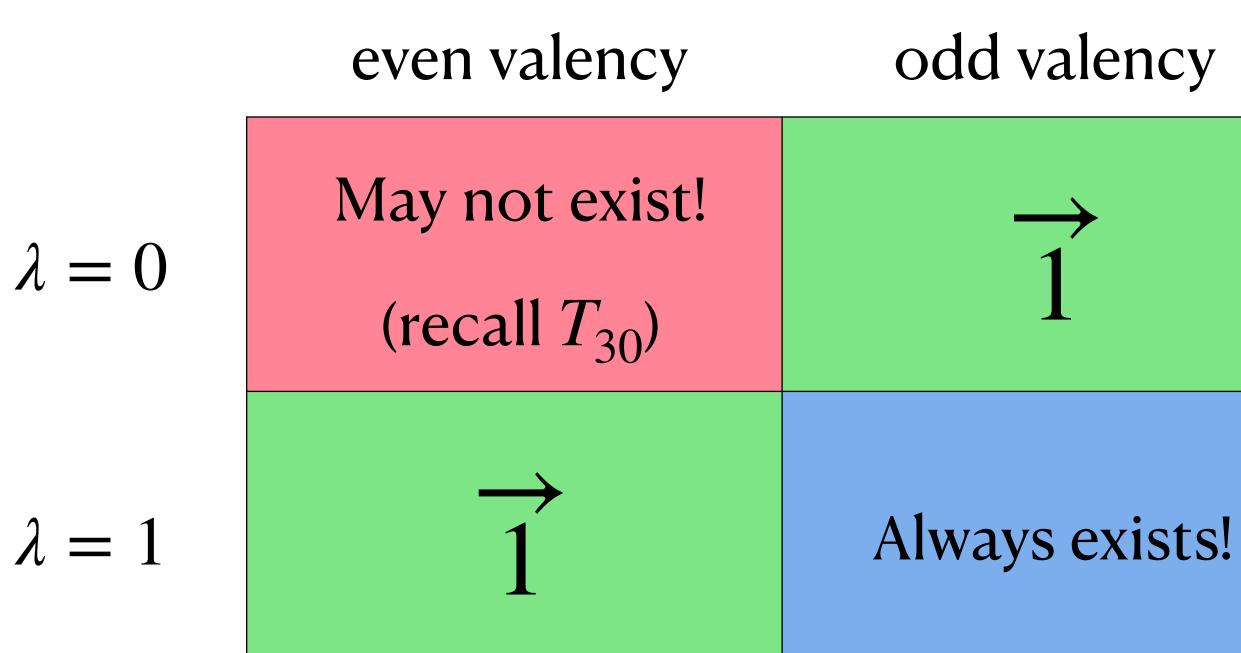
- A twisting vector exists if and only if the following equation has a solution
  - $(A(X) \lambda I)x = \overrightarrow{1}$

### odd valency



# Recent developments: Twisting Vectors (over $\mathbb{F}_2$ )

A twisting vector exists if and only if the following equation has a solution

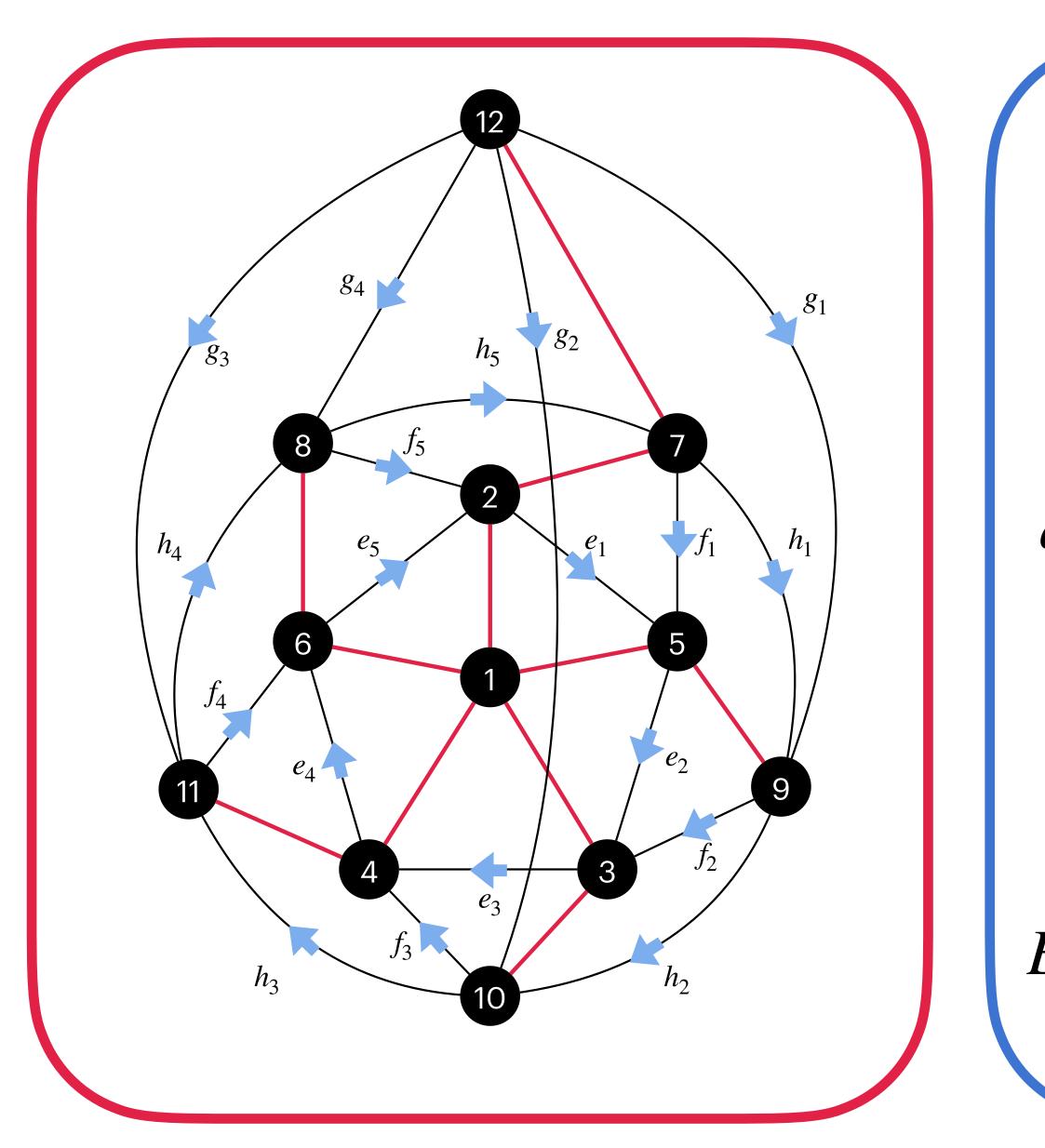


 $(A(X) - \lambda I)x = \vec{1}$ 

FACT If  $A \in M_n(\mathbb{F}_2)$  is symmetric, then im(A) contains the diagonal of A.



# New description of the exponential family



Sabidussi double-coset graphs  $G_n = V_0(\mathbb{Z}_n^5) \rtimes A_5$   $H_n = 1 \times \langle (1,2,3,4,5) \rangle \cong C_5$   $a_n = ([1, -1, 1, -1, 0], (1,2)(3,4)) \in G_n$ 

Infinite family of graphs  $I_n$  with  $V(I_n) = \text{right cosets of } H_n \text{ in } G_n$  $E(I_n) = H_n x \sim H_n y \iff xy^{-1} \in H_n a_n H_n$ 



### Graph growth of low degree groups

Determining the graph growth of the

last transitive permutation group of degree 8

## The eigenspace technique

Given a permutation group *L*,

how to construct locally-L graphs with large

eigenspaces over finite fields?

### $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$

### Future work

Polynomial bounds on the graph growth of permutation groups

Do there exist permutation groups of "intermediate" graph growth?

### **Questions?**

Thank you for your attention!