Graph growth of permutation groups

MARSDEN FUNE

TE PŪTEA RANGAHAU A MARSDEN

- **Đorđe Mitrović**
- **University of Auckland**
- Supervisors: Gabriel Verret, Jeroen Schillewaert, Florian Lehner
 - Seminar on Groups and Graphs
 - 8th May 2024

Graphs are finite, simple (undirected, no multiple edges, no loops) and connected

Automorphisms of a graph $\Gamma = (V, E)$ are permutations of *V* preserving *E*

- A graph Γ is **arc-transitive** if Aut(Γ) is transitive on arcs (directed edges) $\forall (x, y), (z, w)$ with $\{x, y\}, \{z, w\} \in E(\Gamma)$ $\exists g \in Aut(\Gamma) \text{ s.t. } (x, y)^g = (z, w)$
 - Valency is the number of neighbours of a vertex

Tutte's theorem

Let Γ be a finite 3-valent, connected graph and $G \leq \operatorname{Aut}(\Gamma)$ transitive on the arcs of Γ . $|G_{\nu}| \leq 48.$

 $\operatorname{Aut}(P) \cong_{perm} S_5 \curvearrowright \left(\begin{array}{c} \{1, \dots, 5\} \\ 2 \end{array} \right)$

 $\operatorname{Aut}(P)_{v} \cong S_{3} \times S_{2}$

Tutte's theorem

- Let Γ be a finite 3-valent, connected graph and
 - $G \leq \operatorname{Aut}(\Gamma)$ transitive on the arcs of Γ .
 - $|G_v| \leq 48.$

...

Census of 3-valent arc-transitive graphs on ≤ 10000 vertices (Conder) Asymptotic enumeration (Potočnik, Spiga, Verret)

Local action

 Γ is a connected graph, $G \leq \operatorname{Aut}(\Gamma)$ vertex-transitive.

The pair (Γ, G) is locally-*L* if $G_v \curvearrowright \Gamma(v)$ induces *L*.

If
$$\Gamma = K_{n,n}$$
 and $G = \operatorname{Aut}(K_{n,n}) \cong S_n \wr S_2$, then $G_v = S_{n-1} \times S_n$ and $L = S_n$.

The pair
$$(K_{n,n})$$

L = permutation group

Graph growth of *L* is the growth rate of $|G_v|$ wrt $|V(\Gamma)|$ in locally-*L* pairs (Γ , *G*).

 $|V(\Gamma)|$

Graph growth

Graph growth of *L*

is the growth rate of $|G_v|$ wrt $|V(\Gamma)|$

in locally-*L* pairs (Γ , *G*).

Tutte's theorem

 A_3 and S_3 have Constant growth

 $|V(\Gamma)|$

Graph growth

Graph growth of *L*

is the growth rate of $|G_v|$ wrt $|V(\Gamma)|$

in locally-*L* pairs (Γ , *G*).

Tutte's theorem

 A_3 and S_3 have Constant growth

For even $n \ge 6$, D_n has Polynomial growth

locally- D_n pairs $(\Gamma, G), n \ge 6$ even

 $|V(\Gamma)|$

Graphgrowth

Graph growth of *L*

is the growth rate of $|G_v|$ wrt $|V(\Gamma)|$

in locally-*L* pairs (Γ , *G*).

Tutte's theorem

 A_3 and S_3 have Constant growth

For even $n \ge 6$, D_n has Polynomial growth

Imprimitive wreath products have Exponential growth

locally-*L* pairs (Γ , *G*) with *L* an imp. wr. prod.

Graph growth

Graph growth of *L*

is the growth rate of $|G_v|$ wrt $|V(\Gamma)|$

in locally-*L* pairs (Γ , *G*).

Tutte's theorem

 A_3 and S_3 have Constant growth

For even $n \ge 6$, D_n has Polynomial growth

Imprimitive wreath products have Exponential growth

Remarks

"Slow" graph growth still allows

for cool results.

Graph growth is always at most Exponential.

This might not be the full list

of types of graph growth!

My PhD project

Graph growth of transitive permutation groups

Degree	Constant	Polynomial	Exponential
2	<i>S</i> ₂	/	/
3	A_{3}, S_{3}	/	/
4	C_4, V_4, A_4, S_4	/	D_4
5	C_5, D_5 F_5, A_5, S_5	/	/
6	six groups	D_6	nine groups
7	seven groups	/	/

Degree ≤ 7

Graph growth of transitive permutation groups of degree 8

Graph growth of transitive permutation groups of degree 8

Graph growth	
Constant	
Polynomial	
Exponential	

Graph growth of transitive permutation groups of degree 8

Graph growth	#	Groups	
Constant	14	semiprimitive groups	Every normal subgroup transitive or semiregula
Polynomial	3	$\begin{array}{c} D_8\\ SD_8\\ S_4 \curvearrowleft cube\end{array}$	
Exponential	30	various imprimitive groups	
UNKNOWN	3	$V_0(\mathbb{F}_2^4) \rtimes A_4$ $V_0(\mathbb{F}_2^4) \rtimes S_4$ $V_0(\mathbb{F}_2^4) \cdot S_4$	

Three transitive groups of degree 8

Exponential graph growthUnknown graph growth

Admit a unique block system with four blocks of size 2

Deleted permutation module

$$V_0(\mathbb{F}^n) = \{(v_1, \dots, v_n) \in \mathbb{F}^n \mid \sum_{i=1}^n v_i = 0\}$$

Hujdurović, Potočnik, Verret (2022)

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs via lexicographic products

Take n = 4, $\mathbb{F} = \mathbb{F}_2$ and $L_1 = A_4$.

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

via lexicographic products

 $\mathbb{F}_2 \wr \operatorname{Aut}(X) = \mathbb{F}_2^{|V(X)|} \rtimes \operatorname{Aut}(X)$ $\leq \operatorname{Aut}(Y)$

> Can we find an $C \leq \mathbb{F}_2 \wr \operatorname{Aut}(X)$ s.t.

(Y, C) is locally-*L*?

$$C = M \rtimes H$$

- 1. $H \leq \operatorname{Aut}(X)$ locally inducing A_4
- $M \leq \mathbb{F}_{2}^{|V(X)|}$ an *H*-module 2.

locally inducing $V_0(\mathbb{F}_2^4)$

$$Y = X[\overline{K_2}]$$

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

via lexicographic products

$$C = M \rtimes H$$

1. $H \leq \operatorname{Aut}(X)$ locally inducing A_4

 $M \leq \mathbb{F}_2^{|V(X)|}$ an *H*-module 2.

locally inducing $V_0(\mathbb{F}_2^4)$

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

(X, H) is locally- A_4

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

 $C = M \rtimes H$

- $H \leq \operatorname{Aut}(X)$ locally inducing A_4 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$ an *H*-module 2.

locally inducing $V_0(\mathbb{F}_2^4)$

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

(X, H) is locally- A_4

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

 $C = M \rtimes H$

- $H \leq \operatorname{Aut}(X)$ locally inducing A_4 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$ an *H*-module 2.

locally inducing $V_0(\mathbb{F}_2^4)$

 $L = V_0(\mathbb{F}_2^4) \rtimes A_4$ has a block system with four blocks of size two.

(X, H) is locally- A_4

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

$$C = M \rtimes H$$

- $H \leq \operatorname{Aut}(X)$ locally inducing A_4 1.
- $M \leq \mathbb{F}_2^{|V(X)|}$ an *H*-module 2.

locally inducing $V_0(\mathbb{F}_2^4)$

0-around-0 property

For $f \in M$, if f(v) = 0, then $\sum f(u) = 0$ (over \mathbb{F}_2). $u \sim_X v$

0-around-0 modules

 $X = \text{vertex-transitive graph}, A = \text{adjacency matrix of } X \text{ over a field } \mathbb{F}$

Aut(X)-modules $M \leq \mathbb{F}^{V(X)}$ satisfying the 0-around-0 property

 $f(v) = 0 \Rightarrow (A)$

 λ -eigenspaces of X

 E_{λ} is the space of all functions $f \in \mathbb{F}^{V(X)}$ such that

 $(Af)(v) = \lambda f(v), \forall v \in V(X)$

 E_{λ} is a 0-around-0 module, $\forall \lambda \in \mathbb{F}$

$$f(v) = \sum_{u \sim v} f(u) = 0$$

Theorem

The non-trivial eigenspaces E_{λ} of X are

precisely the maximal 0-around-0 modules

The same holds for general linear operators

 $A \colon \mathbb{F}^V \to \mathbb{F}^V$, where *V* is a transitive *G*-set.

 $\mathscr{C} = V_0(\mathbb{F}^n) \rtimes L_1$ and (Y_m, C_m) is locally-*L* for all $m \in \mathbb{N}$

Construction $Y_m = X_m[\overline{K_a}]$ $C_m = \left\langle E_m, H_m \right\rangle = E_m \rtimes H_m$ $H_m \leq \operatorname{Aut}(X_m), E_m = E_{\lambda}(X_m) \text{ over } \mathbb{F}$

Locally- $(V_0(\mathbb{F}^n) \rtimes L_1)$ pairs

Conditions

1. (X_m, H_m) is locally- L_1

4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module

ABC lemma

Potočnik, Spiga, Verret (2014)

- 1. $A \ge B \ge C$
- 2. (X, B) is locally- \mathscr{B} ,
- 3. $|B_v| = t |C_v|$ with t depending only on \mathscr{C} .

 $X = \text{graph}, v \in V(X)$ with $C \leq A \leq \text{Aut}(X)$ vertex-transitive groups of automorphisms

(X, C) is locally- \mathscr{C} and (X, A) is locally- \mathscr{A}

If C is normal in A, then for every \mathscr{B} with $\mathscr{A} \geq \mathscr{B} \geq \mathscr{C}$ we can find $B \leq \operatorname{Aut}(X)$ such that:

You can get everything 'inbetween' A and C, and all stabilisers will have the same growth!!!

Applying the ABC lemma

 $Y_m = X_m[\overline{K_q}]$

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$ with (Y_m, C_m) locally $V_0(\mathbb{F}^n) \rtimes L_1$

Locally-FZL2 pairs

via lexicographic products

$$\mathscr{A} = \mathbb{F} \wr L_2 \text{ and } (Y_m, A_m)$$

Construction $Y_m = X_m[\overline{K_q}]$ $A_m = \left\langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \right\rangle$ $G_m \leq \operatorname{Aut}(X_m), E_m = E_{\lambda}(X_m) \text{ over } \mathbb{F}$

) is locally-*L* for all $m \in \mathbb{N}$

Conditions

2. (X_m, G_m) is locally- L_2

6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ with $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$

Applying the ABC lemma

 $Y_m = X_m[\overline{K_q}]$

 $A_m = \langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \rangle \text{ with } (Y_m, A_m) \text{ locally-} \mathbb{F} \wr L_2$

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$ with (Y_m, B_m) locally $V_0(\mathbb{F}^n) \rtimes L_1$

Applying the ABC lemma

$$Y_m = X_m[\overline{K_q}]$$

 $A_m = \langle E_m, G_m, \lambda f_m : \lambda \in \mathbb{F} \rangle$ with (Y_m, A_m) locally- $\mathbb{F} \wr L_2$

 $C_m = \langle E_m, H_m \rangle = E_m \rtimes H_m$ with (Y_m, B_m) locally- $V_0(\mathbb{F}^n) \rtimes L_1$

Conditions 3. H_m is normal in G_m 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ with $f_m^x - f_m \in E_m, \forall x \in H_m$

ABC Lemma:

For all *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ we obtain locally-*L* pairs $\{(Y_m, B_m)\}_{m \in \mathbb{N}}$ with $|(B_m)_v| = t |(C_m)_v|$

$|(B_m)_v| = t|(C_m)_v| = t|(E_m \rtimes H_m)_v| \ge |E_m| = q^{\dim(E_m)}$

 $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$

 $|(B_m)_v| = t|(C_m)_v| = t|(E_m \rtimes H_m)_v| \ge |E_m| = q^{\dim(E_m)}$

 $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$

For all *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ we obtain locally-*L* pairs $\{(Y_m, B_m)\}_{m \in \mathbb{N}}$ with

$|(B_m)_v| \ge q^{\dim(E_m)} \ge (q^{c/q})^{|V(Y_m)|}$

EXPONENTIAL GROWTH!

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs • • • $H_m, G_m \leq \operatorname{Aut}(X_m)$ = vertex-transitive groups of symmetries $\mathbb{P} \subseteq L$ (X_m, H_m) is locally- L_1 , Ensuring the correct local action 2. (X_m, G_m) is locally- L_2 , • • • on the bottom 3. H_m is normal in G_m , 4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module, $\exists \lambda \in \mathbb{F}$ and a constant c > 0 such that $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$, 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$ (X_m, H_m) is locally- L_1 , 2. (X_m, G_m) is locally- L_2 , 3. H_m is normal in G_m , 4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module, $\exists \lambda \in \mathbb{F}$ and a constant c > 0 such that $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c |V(X_m)|$, 5. 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$ (X_m, H_m) is locally- L_1 , 2. (X_m, G_m) is locally- L_2 , 3. H_m is normal in G_m , 4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module, $\exists \lambda \in \mathbb{F}$ and a constant c > 0 such that $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c |V(X_m)|$, 5. 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q ${X_m}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs (X_m, H_m) is locally- L_1 ,

2.
$$(X_m, G_m)$$
 is locally- L_2 ,

3.
$$H_m$$
 is normal in G_m ,

(١
	J	

6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q $\{X_m\}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$

- (X_m, H_m) is locally- L_1 ,
- 2. (X_m, G_m) is locally- L_2 ,
- 3. H_m is normal in G_m ,
- 4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module,
- $\exists \lambda \in \mathbb{F}$ and a constant c > 0 such that $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$, 5.
- 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

Every group *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ has exponential graph growth.

 $L_1 \leq L_2$ = transitive permutation groups of degree *n* \mathbb{F} = finite field of order q ${X_m}_{m \in \mathbb{N}}$ = infinite family of *n*-regular graphs $H_m, G_m \leq \operatorname{Aut}(X_m) = \operatorname{vertex-transitive groups of symmetries}$

- (X_m, H_m) is locally- L_1 ,
- 2. (X_m, G_m) is locally- L_2 ,
- 3. H_m is normal in G_m ,

- 4. $V_0(\mathbb{F}^n)$ is an irreducible L_1 -module,
- $\exists \lambda \in \mathbb{F}$ and a constant c > 0 such that $\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \geq c |V(X_m)|$, 5.
- 6. $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x f_m \in E_{\lambda}(X_m), \forall x \in H_m$.

Every group *L* with $V_0(\mathbb{F}^n) \rtimes L_1 \leq L \leq \mathbb{F} \wr L_2$ has exponential graph growth.

F₂-eigenspaces of 4-valent 2-arc-transitive graphs

Database of all locally- A_4 and locally- S_4 graphs on at most 2000 vertices (Potočnik, 2008)

\mathbb{Z}_m^5 – voltage covers of T_{30}

Method

Malnič, Marušič and Potočnik (2004)

- (T_{30}, H) is locally- A_4 and (T_{30}, G) is locally- S_4
- Basis of a 5-dimensional subspace $U \le H_1(T_{30}, \mathbb{Z}_m)$ invariant under $\operatorname{Aut}(T_{30}) \curvearrowright H_1(T_{30}, \mathbb{Z}_m)$

Result

$$X_m = \mathbb{Z}_m^5 \text{-cover of } T_{30}$$
$$(X_m, H_m) \text{ is locally-} A_4 \text{ and } (X_m, G_m) \text{ is locally-} S_4$$
$$H_m \text{ is normal in } G_m$$

т	$ V(X_m) / \dim(E_0(X_m))$	$ V(X_m) /\dim(E_1(X_m)) $
1	2.142	7.5
2	4.285	12
3	4.972	18.044
4	4.897	23.237
5	4.997	20.907
6	4.996	35.132

The universal eigenvector

 $V(T_{30}) \times 0$

Using MAGMA we obtain:

x = 0-eigenvector of X_m with support of size 15 located in this subset

 $\exists f_m \in \mathbb{F}^{V(X_m)}$ such that $f_m^x - f_m \in E_{\lambda}(X_m), \forall x \in H_m$

Graph growth of some groups of degree 10

Method

Malnič, Marušič and Potočnik (2004)

• (\mathbb{I}, H) is locally- C_5 and (\mathbb{I}, G) is locally- D_5 with H normal in G

Basis of a 4-dimensional subspace $U \le H_1(\mathbb{I}, \mathbb{Z}_m)$ invariant under Aut(\mathbb{I}) $\curvearrowright H_1(\mathbb{I}, \mathbb{Z}_m)$

Result

$$I_m = \mathbb{Z}_m^4 \text{-cover of } \mathbb{I}$$

 (I_m, H_m) is locally- C_5 and (I_m, G_m) is locally- D_5

 H_m is normal in G_m

F_2 -eigenspaces of I_m

т	$ V(I_m) / \dim(E_0(I_m))$	$ V(I_m) /\dim(E_1(I_m))$
1	∞	2
2	∞	2.742
3	12.15	2.981
4	∞	2.982
5	46.875	2.997
6	27.771	2.996
7	30.012	2.999
8	∞	2.998

Result

$$\begin{split} I_m &= \mathbb{Z}_m^4 \text{-cover of } \mathbb{I} \\ (I_m, H_m) \text{ is locally-} C_5 \text{ and } (I_m, G_m) \text{ is locally-} D_5 \\ H_m \text{ is normal in } G_m \\ \dim_{\mathbb{F}_2}(E_1(I_m)) &\geq \frac{|V(I_m)|}{12} \\ f_m \text{ is the lift of } f \in \mathbb{F}_2^{V(\mathbb{I})} \text{ such that } f^x - f \in E_1(\mathbb{I}), x \in H \end{split}$$

Graph growth of some groups of degree 10

Work in progress

Recent developments: Twisting Vectors

$X = \text{graph}, G \leq \text{Aut}(X)$ is transitive on vertices $\mathbb{F} = \text{field}, \lambda \in \mathbb{F}$

$f \in \mathbb{F}^{V(X)}$ such that

Proposition

$$f^{x} - f \in E_{\lambda}(X), \forall x \in G$$

A twisting vector exists if and only if the following equation has a solution $(A(X) - \lambda I)x = \overrightarrow{1}$

Recent developments: Twisting Vectors (over \mathbb{F}_2)

even valency

- A twisting vector exists if and only if the following equation has a solution
 - $(A(X) \lambda I)x = \overrightarrow{1}$

odd valency

Recent developments: Twisting Vectors (over \mathbb{F}_2)

even valency

May not exist!

(recall T_{30})

 $\lambda = 0$

 $\lambda = 1$

- A twisting vector exists if and only if the following equation has a solution
 - $(A(X) \lambda I)x = \overrightarrow{1}$

odd valency

Recent developments: Twisting Vectors (over \mathbb{F}_2)

A twisting vector exists if and only if the following equation has a solution

 $(A(X) - \lambda I)x = \vec{1}$

FACT If $A \in M_n(\mathbb{F}_2)$ is symmetric, then im(A) contains the diagonal of A.

New description of the exponential family

Sabidussi double-coset graphs $G_n = V_0(\mathbb{Z}_n^5) \rtimes A_5$ $H_n = 1 \times \langle (1,2,3,4,5) \rangle \cong C_5$ $a_n = ([1, -1, 1, -1, 0], (1,2)(3,4)) \in G_n$

Infinite family of graphs I_n with $V(I_n) = \text{right cosets of } H_n \text{ in } G_n$ $E(I_n) = H_n x \sim H_n y \iff xy^{-1} \in H_n a_n H_n$

Graph growth of low degree groups

Determining the graph growth of the

last transitive permutation group of degree 8

The eigenspace technique

Given a permutation group *L*,

how to construct locally-L graphs with large

eigenspaces over finite fields?

$\dim_{\mathbb{F}}(E_{\lambda}(X_m)) \ge c | V(X_m) |$

Future work

Polynomial bounds on the graph growth of permutation groups

Do there exist permutation groups of "intermediate" graph growth?

Questions?

Thank you for your attention!