Graph growth of permutation groups

Đorđe Mitrović

University of Auckland

Supervisors: Gabriel Verret, Jeroen Schillewaert, Florian Lehner

8th May 2024

Graphs are finite, simple (undirected, no multiple edges, no loops) and connected

Automorphisms of a graph $\Gamma=(V, E)$ are permutations of V preserving E

A graph Γ is arc-transitive if $\operatorname{Aut}(\Gamma)$ is transitive on arcs (directed edges)

$$
\begin{gathered}
\forall(x, y),(z, w) \text { with }\{x, y\},\{z, w\} \in E(\Gamma) \\
\exists g \in \operatorname{Aut}(\Gamma) \text { s.t. }(x, y)^{g}=(z, w)
\end{gathered}
$$

Vallency is the number of neighbours of a vertex

Tutte's theorem

Let Γ be a finite 3-valent, connected graph and $G \leq \operatorname{Aut}(\Gamma)$ transitive on the arcs of Γ.

$$
\left|G_{v}\right| \leq 48
$$

$$
\begin{gathered}
\operatorname{Aut}(P) \cong_{\text {perm }} S_{5} \curvearrowright\binom{\{1, \ldots, 5\}}{2} \\
\operatorname{Aut}(P)_{v} \cong S_{3} \times S_{2}
\end{gathered}
$$

Tutte's theorem

Let Γ be a finite 3 -valent, connected graph and $G \leq \operatorname{Aut}(\Gamma)$ transitive on the arcs of Γ.

$$
\left|G_{v}\right| \leq 48
$$

Census of 3-valent arc-transitive graphs on ≤ 10000 vertices (Conder)
Asymptotic enumeration (Potočnik, Spiga, Verret)

Local action

Γ is a connected graph, $G \leq \operatorname{Aut}(\Gamma)$ vertex-transitive.

The pair (Γ, G) is locally- L if $G_{v} \curvearrowright \Gamma(v)$ induces L.

$$
\text { If } \Gamma=K_{n, n} \text { and } G=\operatorname{Aut}\left(K_{n, n}\right) \cong S_{n} \imath S_{2} \text {, then } G_{v}=S_{n-1} \times S_{n} \text { and } L=S_{n}
$$

The pair $\left(K_{n, n}, S_{n} 乙 S_{2}\right)$ is locally- S_{n}.

Graph growth

$L=$ permutation group

Graph growth of L is the growth rate of $\left|G_{v}\right|$ wrt $|V(\Gamma)|$ in locally- L pairs (Γ, G).

Graph growth

Graph growth

Graph growth of L
is the growth rate of $\left|G_{v}\right|$ wrt $|V(\Gamma)|$
in locally-L pairs (Γ, G).
Tutte's theorem
A_{3} and S_{3} have Constant growth
For even $n \geq 6, D_{n}$ has Polynomial growth

Graph growth

Graph growth of L
is the growth rate of $\left\|G_{v}\right\|$ wrt $\|V(\Gamma)\|$
in locally- L pairs (Γ, G).
Tutte's theorem
A_{3} and S_{3} have Constant growth
For even $n \geq 6, D_{n}$ has Polynomial growth
Imprimitive wreath products
have Exponential growth

locally- L pairs (Γ, G) with L an imp. wr. prod.

Graph growth

Graph growth of L
is the growth rate of $\left|G_{v}\right|$ wrt $|V(\Gamma)|$
in locally- L pairs (Γ, G).
Tutte's theorem
A_{3} and S_{3} have Constant growth

For even $n \geq 6, D_{n}$ has Polynomial growth

Imprimitive wreath products
have Exponential growth

Remarks

"Slow" graph growth still allows
for cool results.

Graph growth is always at most Exponential.

This might not be the full list of types of graph growth!

My PhD project

Graph growth of transitive permutation groups

Degree ≤ 7

Degree	Constant	Polynomial	Exponential
2	S_{2}	,	$/$
3	A_{3}, S_{3}	$/$	$/$
4	$C_{4}, V_{4}, A_{4}, S_{4}$ C_{5}, D_{5} F_{5}, A_{5}, S_{5}	$/$	D_{4}
5	six groups	D_{6}	nine groups
6	seven groups	,	$/$
7			

Graph growth of transitive permutation groups of degree 8

Graph growth of transitive permutation groups of degree 8

Graph growth	$\#$	Groups
Constant	14	semiprimitive groups
Polynomial	3	D_{8} $S D_{8}$ $S_{4} \curvearrowright$ cube
Exponential	30	Every normal subgroup is transitive or semiregular.

Graph growth of transitive permutation groups of degree 8

Graph growth	$\#$	Groups
Constant	14	semiprimitive groups
Polynomial	3	D_{8} $S D_{8}$ $S_{4} \curvearrowright$ cube
Exponential	30	various imprimitive normal subgroup is groups transitive or semiregular.
UNKNOWN	3	$V_{0}\left(\mathbb{F}^{4}\right) \rtimes A_{4}$ $V_{0}\left(\mathbb{F}_{4}^{4}\right) \rtimes S_{4}$ $V_{0}\left(\mathbb{F}_{2}^{4}\right) \cdot S_{4}$

Three transitive groups of degree 8

Exponential graph growthUnknown graph growth

Admit a unique block system
with four blocks of size 2

Deleted permutation module

$$
V_{0}\left(\mathbb{F}^{n}\right)=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n} \mid \sum_{i=1}^{n} v_{i}=0\right\}
$$

$$
\mathbb{F}_{2} \prec A_{4} \quad V_{0}\left(\mathbb{F}_{2}^{4}\right) \cdot S_{4} \quad V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes S_{4}
$$

$$
V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}
$$

degree 8

$V_{0}\left(\mathbb{F}_{2}^{3}\right) \rtimes A_{3}$

Hujdurović, Potočnik, Verret (2022)
$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
n=3, L_{1}=A_{3}, L_{2}=S_{3} \text { and } \mathbb{F}=\mathbb{F}_{2}
$$

$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
n=4, L_{1}=A_{4}, L_{2}=S_{4} \text { and } \mathbb{F}=\mathbb{F}_{2}
$$

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products
Take $n=4, \mathbb{F}=\mathbb{F}_{2}$ and $L_{1}=A_{4}$.
$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two.

X

$$
Y=X\left[\overline{K_{2}}\right]
$$

Locally－$\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two．

$$
Y=X\left[\overline{K_{2}}\right]
$$

$$
\begin{aligned}
& \mathbb{F}_{2} 乙 \operatorname{Aut}(X)=\mathbb{F}_{2}^{|V(X)|} \rtimes \operatorname{Aut}(X) \\
& \leq \operatorname{Aut}(Y)
\end{aligned}
$$

Can we find an
$C \leq \mathbb{F}_{2}$ 乙 $\operatorname{Aut}(X)$ s．t．
(Y, C) is locally－L ？

$$
C=M \rtimes H
$$

1．$H \leq \operatorname{Aut}(X)$ locally inducing A_{4}
2．$\quad M \leq \mathbb{F}_{2}^{|V(X)|}$ an H－module locally inducing $V_{0}\left(\mathbb{F}_{2}^{4}\right)$

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two.

$$
Y=X\left[\overline{K_{2}}\right]
$$

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two.

(X, H) is locally $-A_{4}$

$$
Y=X\left[\overline{K_{2}}\right]
$$

1. $H \leq \operatorname{Aut}(X)$ locally inducing A_{4}
2. $\quad M \leq \mathbb{F}_{2}^{|V(X)|}$ an H-module locally inducing $V_{0}\left(\mathbb{F}_{2}^{4}\right)$

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two.

(X, H) is locally $-A_{4}$

$$
Y=X\left[\overline{K_{2}}\right]
$$

1. $H \leq \operatorname{Aut}(X)$ locally inducing A_{4}
2. $\quad M \leq \mathbb{F}_{2}^{|V(X)|}$ an H-module locally inducing $V_{0}\left(\mathbb{F}_{2}^{4}\right)$

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$L=V_{0}\left(\mathbb{F}_{2}^{4}\right) \rtimes A_{4}$ has a block system with four blocks of size two.

(X, H) is locally $-A_{4}$

For $f \in M$, if $f(v)=0$, then $\sum_{u \sim \alpha^{v}} f(u)=0\left(\right.$ over $\left.\mathbb{F}_{2}\right)$.

$$
Y=X\left[\overline{K_{2}}\right]
$$

0 -around- 0 modules

$$
X=\text { vertex-transitive graph, } A=\text { adjacency matrix of } X \text { over a field } \mathbb{F}
$$

$\operatorname{Aut}(X)$-modules $M \leq \mathbb{F}^{V(X)}$ satisfying the 0 -around- 0 property

$$
f(v)=0 \Rightarrow(A f)(v)=\sum_{u \sim v} f(u)=0
$$

λ-eigenspaces of X
E_{λ} is the space of all functions $f \in \mathbb{F}^{V(X)}$ such that

$$
(A f)(v)=\lambda f(v), \forall v \in V(X)
$$

E_{λ} is a 0 -around- 0 module, $\forall \lambda \in \mathbb{F}$

Theorem
The non-trivial eigenspaces E_{λ} of X are

precisely the maximal 0 -around- 0 modules

Locally- $\left(V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}\right)$ pairs

via lexicographic products

$$
\mathscr{C}=V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1} \text { and }\left(Y_{m}, C_{m}\right) \text { is locally- } L \text { for all } m \in \mathbb{N}
$$

$$
\begin{gathered}
\text { Construction } \\
Y_{m}=X_{m}\left[\overline{K_{q}}\right] \\
C_{m}=\left\langle E_{m}, H_{m}\right\rangle=E_{m} \rtimes H_{m} \\
H_{m} \leq \operatorname{Aut}\left(X_{m}\right), E_{m}=E_{\lambda}\left(X_{m}\right) \text { over } \mathbb{F}
\end{gathered}
$$

Conditions

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1}
2. $V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module

ABC lemma

$X=$ graph, $v \in V(X)$ with $C \leq A \leq \operatorname{Aut}(X)$ vertex-transitive groups of automorphisms (X, C) is locally $-\mathscr{C}$ and (X, A) is locally- \mathscr{A}

Potočnik, Spiga, Verret (2014)

If C is normal in A, then for every \mathscr{B} with $\mathscr{A} \geq \mathscr{B} \geq \mathscr{C}$ we can find $B \leq \operatorname{Aut}(X)$ such that:

1. $A \geq B \geq C$
2. (X, B) is locally- \mathscr{B},
3. $\left|B_{v}\right|=t\left|C_{v}\right|$ with t depending only on \mathscr{C}.

You can get everything 'inbetween' A and C, and all stabilisers will have the same growth!!!

Applying the ABC lemma

$$
Y_{m}=X_{m}\left[\overline{K_{q}}\right]
$$

Locally- $\mathbb{F} Z_{2}$ pairs

via lexicographic products

$$
\mathscr{A}=\mathbb{F} \imath L_{2} \text { and }\left(Y_{m}, A_{m}\right) \text { is locally- } L \text { for all } m \in \mathbb{N}
$$

$$
\begin{gathered}
\text { Construction } \\
Y_{m}=X_{m}\left[\overline{K_{q}}\right] \\
A_{m}=\left\langle E_{m}, G_{m}, \lambda f_{m}: \lambda \in \mathbb{F}\right\rangle \\
G_{m} \leq \operatorname{Aut}\left(X_{m}\right), E_{m}=E_{\lambda}\left(X_{m}\right) \text { over } \mathbb{F}
\end{gathered}
$$

Conditions

2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2}
3. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ with $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$

Applying the ABC lemma

$$
Y_{m}=X_{m}\left[\overline{K_{q}}\right]
$$

$$
\left.A_{m}=\left\langle E_{m}, G_{m}, \lambda f_{m}: \lambda \in \mathbb{F}\right\rangle \text { with }\left(Y_{m}, A_{m}\right) \text { locally- } \mathbb{F}\right\rangle L_{2}
$$

$$
C_{m}=\left\langle E_{m}, H_{m}\right\rangle=E_{m} \rtimes H_{m} \text { with }\left(Y_{m}, B_{m}\right) \text { locally- } V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}
$$

Applying the ABC lemma

$$
Y_{m}=X_{m}\left[\overline{K_{q}}\right]
$$

$A_{m}=\left\langle E_{m}, G_{m}, \lambda f_{m}: \lambda \in \mathbb{F}\right\rangle$ with $\left(Y_{m}, A_{m}\right)$ locally- $\left.\mathbb{F}\right\rangle L_{2}$
$C_{m}=\left\langle E_{m}, H_{m}\right\rangle=E_{m} \rtimes H_{m}$ with $\left(Y_{m}, B_{m}\right)$ locally- $V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}$

Conditions

3. H_{m} is normal in G_{m}
4. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ with $f_{m}^{x}-f_{m} \in E_{m}, \forall x \in H_{m}$

ABC Lemma:

For all L with $V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1} \leq L \leq \mathbb{F} \imath L_{2}$ we obtain locally- L pairs $\left\{\left(Y_{m}, B_{m}\right)\right\}_{m \in \mathbb{N}}$ with

$$
\left|\left(B_{m}\right)_{v}\right|=t\left|\left(C_{m}\right)_{v}\right|
$$

$$
\left|\left(B_{m}\right)_{v}\right|=t\left|\left(C_{m}\right)_{v}\right|=t\left|\left(E_{m} \rtimes H_{m}\right)_{v}\right| \geq\left|E_{m}\right|=q^{\operatorname{dim}\left(E_{m}\right)}
$$

$$
\operatorname{dim}_{F}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|
$$

$$
\left|\left(B_{m}\right)_{v}\right|=t\left|\left(C_{m}\right)_{v}\right|=t\left|\left(E_{m} \rtimes H_{m}\right)_{v}\right| \geq\left|E_{m}\right|=q^{\operatorname{dim}\left(E_{m}\right)}
$$

$$
\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|
$$

For all L with $V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1} \leq L \leq \mathbb{F} \imath L_{2}$
we obtain locally- L pairs $\left\{\left(Y_{m}, B_{m}\right)\right\}_{m \in \mathbb{N}}$ with

$$
\left|\left(B_{m}\right)_{v}\right| \geq q^{\operatorname{dim}\left(E_{m}\right)} \geq\left(q^{c / q}\right)^{\left|V\left(Y_{m}\right)\right|}
$$

EXPONENTIAL GROWTH!

$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
\mathbb{F}=\text { finite field of order } q
$$

$$
\left\{X_{m}\right\}_{m \in \mathbb{N}}=\text { infinite family of } n \text {-regular graphs }
$$

$H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=$ vertex-transitive groups of symmetries

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1},
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2},
3. H_{m} is normal in G_{m},
4. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

Ensuring the correct local action on the bottom
5. $\exists \lambda \in \mathbb{F}$ and a constant $c>0$ such that $\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$,
6. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ such that $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$.
$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
\mathbb{F}=\text { finite field of order } q
$$

$$
\left\{X_{m}\right\}_{m \in \mathbb{N}}=\text { infinite family of } n \text {-regular graphs }
$$

$$
H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=\text { vertex-transitive groups of symmetries }
$$

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1},
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2},

Ensuring the correct local action on the top
3. H_{m} is normal in G_{m},
4. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
\mathbb{F}=\text { finite field of order } q
$$

$$
\left\{X_{m}\right\}_{m \in \mathbb{N}}=\text { infinite family of } n \text {-regular graphs }
$$

$$
H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=\text { vertex-transitive groups of symmetries }
$$

1. $\left(X_{m}, H_{m}\right)$ is locally $-L_{1}$,
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2}, 3. H_{m} is normal in G_{m},
3. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

Ensuring we can apply
the ABC lemma
5. $\exists \lambda \in \mathbb{F}$ and a constant $c>0$ such that $\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$,
6. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ such that $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$.
$L_{1} \leq L_{2}=$ transitive permutation groups of degree n

$$
\mathbb{F}=\text { finite field of order } q
$$

$\left\{X_{m}\right\}_{m \in \mathbb{N}}=$ infinite family of n-regular graphs
$H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=$ vertex-transitive groups of symmetries

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1},
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2},
3. H_{m} is normal in G_{m},
4. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

GROWTH!

5. $\exists \lambda \in \mathbb{F}$ and a constant $c>0$ such that $\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$,
6. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ such that $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$.
$L_{1} \leq L_{2}=$ transitive permutation groups of degree n
$\mathbb{F}=$ finite field of order q
$\left\{X_{m}\right\}_{m \in \mathbb{N}}=$ infinite family of n-regular graphs
$H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=$ vertex-transitive groups of symmetries

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1},
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2},
3. H_{m} is normal in G_{m},
4. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

5. $\exists \lambda \in \mathbb{F}$ and a constant $c>0$ such that $\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$,
6. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ such that $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$.

Every group L with $V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1} \leq L \leq \mathbb{F} 乙 L_{2}$ has exponential graph growth.
$L_{1} \leq L_{2}=$ transitive permutation groups of degree n
$\mathbb{F}=$ finite field of order q
$\left\{X_{m}\right\}_{m \in \mathbb{N}}=$ infinite family of n-regular graphs
$H_{m}, G_{m} \leq \operatorname{Aut}\left(X_{m}\right)=$ vertex-transitive groups of symmetries

1. $\left(X_{m}, H_{m}\right)$ is locally- L_{1},
2. $\left(X_{m}, G_{m}\right)$ is locally- L_{2},
3. H_{m} is normal in G_{m},

How do we find

4. $\quad V_{0}\left(\mathbb{F}^{n}\right)$ is an irreducible L_{1}-module,

$$
V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1}
$$

5. $\exists \lambda \in \mathbb{F}$ and a constant $c>0$ such that $\operatorname{dim}_{\mathbb{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$,
6. $\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)}$ such that $f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}$.

Every group L with $V_{0}\left(\mathbb{F}^{n}\right) \rtimes L_{1} \leq L \leq \mathbb{F} 乙 L_{2}$ has exponential graph growth.

\mathbb{F}_{2}-eigenspaces of 4-valent 2-arc-transitive graphs

Database of all locally- A_{4} and locally- S_{4} graphs on at most 2000 vertices (Potočnik, 2008)

\mathbb{Z}_{m}^{5} - voltage covers of T_{30}

\mathbb{Z}_{m}^{5} - voltage covers of T_{30}

Method

Malnič, Marušič and Potočnik (2004)

- $\left(T_{30}, H\right)$ is locally $-A_{4}$ and $\left(T_{30}, G\right)$ is locally- S_{4}
- Basis of a 5-dimensional subspace $U \leq H_{1}\left(T_{30}, \mathbb{Z}_{m}\right)$ invariant under $\operatorname{Aut}\left(T_{30}\right) \curvearrowright H_{1}\left(T_{30}, \mathbb{Z}_{m}\right)$

Result

$$
X_{m}=\mathbb{Z}_{m}^{5} \text {-cover of } T_{30}
$$

$\left(X_{m}, H_{m}\right)$ is locally- A_{4} and $\left(X_{m}, G_{m}\right)$ is locally- S_{4}

$$
H_{m} \text { is normal in } G_{m}
$$

What about the \mathbb{F}_{2}-eigenspaces of X_{m} ?

m	$\left\|V\left(X_{m}\right)\right\| / \operatorname{dim}\left(E_{0}\left(X_{m}\right)\right)$	$\left\|V\left(X_{m}\right)\right\| / \operatorname{dim}\left(E_{1}\left(X_{m}\right)\right)$
1	2.142	7.5
2	4.285	12
3	4.972	18.044
4	4.897	23.237
5	4.997	20.907
6	4.996	35.132

Conjecture:
$\operatorname{dim}\left(E_{0}\left(X_{m}\right)\right)=\left\{\begin{array}{l}\frac{\left|V\left(X_{m}\right)\right|}{5}+8, \text { when } m \text { is odd } \\ \frac{\left|V\left(X_{m}\right)\right|}{5}+32, \text { when } m \text { is even }\end{array}\right.$

Degree 8

$$
\exists f_{m} \in \mathbb{F}^{V\left(X_{m}\right)} \text { such that } f_{m}^{x}-f_{m} \in E_{\lambda}\left(X_{m}\right), \forall x \in H_{m}
$$

Graph growth of some groups of degree 10

Method

Malnič, Marušič and Potočnik (2004)

- $(\mathbb{\square}, H)$ is locally- C_{5} and $(\mathbb{\square}, G)$ is locally- D_{5} with H normal in G
- Basis of a 4-dimensional subspace $U \leq H_{1}\left(\square, \mathbb{Z}_{m}\right)$ invariant under Aut $(\mathbb{\square}) \curvearrowright H_{1}\left(\mathbb{\square}, \mathbb{Z}_{m}\right)$

Result

$$
I_{m}=\mathbb{Z}_{m}^{4} \text {-cover of } \mathbb{\square}
$$

$\left(I_{m}, H_{m}\right)$ is locally- C_{5} and $\left(I_{m}, G_{m}\right)$ is locally- D_{5}

$$
H_{m} \text { is normal in } G_{m}
$$

\mathbb{F}_{2}-eigenspaces of I_{m}

m	$\left\|V\left(I_{m}\right)\right\| / \operatorname{dim}\left(E_{0}\left(I_{m}\right)\right)$	$\left\|V\left(I_{m}\right)\right\| / \operatorname{dim}\left(E_{1}\left(I_{m}\right)\right)$
1	∞	2
2	∞	2.742
3	12.15	2.981
4	∞	2.982
5	46.875	2.997
6	27.771	2.996
7	30.012	2.999
8	∞	2.998

Conjecture:
$\operatorname{dim}\left(E_{1}\left(I_{m}\right)\right)=\left\{\begin{array}{l}\frac{\left|V\left(I_{m}\right)\right|}{3}+2, \text { when } m \text { is odd } \\ \frac{\left|V\left(I_{m}\right)\right|}{3}+6, \text { when } m \text { is even }\end{array}\right.$

Result

$$
I_{m}=\mathbb{Z}_{m}^{4} \text {-cover of } \mathbb{\square}
$$

$\left(I_{m}, H_{m}\right)$ is locally- C_{5} and $\left(I_{m}, G_{m}\right)$ is locally- D_{5}
H_{m} is normal in G_{m}

$$
\operatorname{dim}_{F_{2}}\left(E_{1}\left(I_{m}\right)\right) \geq \frac{\left|V\left(I_{m}\right)\right|}{12}
$$

f_{m} is the lift of $f \in \mathbb{F}_{2}^{V(())}$ such that $f^{x}-f \in E_{1}(\mathbb{\square}), x \in H$

Graph growth of some groups of degree 10

Work in progress

Recent developments: Twisting Vectors

$X=\operatorname{graph}, G \leq \operatorname{Aut}(X)$ is transitive on vertices
$\mathbb{F}=$ field, $\lambda \in \mathbb{F}$

$$
f \in \mathbb{F}^{V(X)} \text { such that } f^{x}-f \in E_{\lambda}(X), \forall x \in G
$$

Proposition

A twisting vector exists if and only if the following equation has a solution

$$
(A(X)-\lambda I) x=\overrightarrow{1}
$$

Recent developments: Twisting Vectors (over \mathbb{F}_{2})

A twisting vector exists if and only if the following equation has a solution

$$
(A(X)-\lambda I) x=\overrightarrow{1}
$$

Recent developments: Twisting Vectors (over F_{2})

A twisting vector exists if and only if the following equation has a solution

$$
(A(X)-\lambda I) x=\overrightarrow{1}
$$

Recent developments: Twisting Vectors (over F_{2})

A twisting vector exists if and only if the following equation has a solution

$$
(A(X)-\lambda I) x=\overrightarrow{1}
$$

FACT

If $A \in M_{n}\left(\mathbb{F}_{2}\right)$ is symmetric, then $\operatorname{im}(A)$ contains the diagonal of A.

New description of the exponential family

Sabidussi double-coset graphs

$$
G_{n}=V_{0}\left(\mathbb{Z}_{n}^{5}\right) \rtimes A_{5}
$$

$$
H_{n}=1 \times\langle(1,2,3,4,5)\rangle \cong C_{5}
$$

$$
a_{n}=([1,-1,1,-1,0],(1,2)(3,4)) \in G_{n}
$$

Infinite family of graphs I_{n} with
$V\left(I_{n}\right)=$ right cosets of H_{n} in G_{n}

$$
E\left(I_{n}\right)=H_{n} x \sim H_{n} y \Longleftrightarrow x y^{-1} \in H_{n} a_{n} H_{n}
$$

Graph growth of low degree groups

Future work

Determining the graph growth of the

The eigenspace technique

Given a permutation group L,
how to construct locally- L graphs with large
eigenspaces over finite fields?
$\operatorname{dim}_{\mathscr{F}}\left(E_{\lambda}\left(X_{m}\right)\right) \geq c\left|V\left(X_{m}\right)\right|$

Polynomial bounds on the
graph growth of permutation groups

Do there exist permutation groups of "intermediate" graph growth?

Questions?

Thank you for your attention!

