

Aldous' spectral gap conjecture and generalizations

Yuxuan Li (Joint with Binzhou Xia and Sanming Zhou)

April 26, 2022

School of Mathematics and Statistics The University of Melbourne

- 1. [Three versions of Aldous' spectral gap conjecture](#page-2-0)
- 2. [Representation theory of symmetric groups](#page-8-0)
- 3. [Generalizations](#page-32-0)

[Three versions of Aldous' spectral](#page-2-0) [gap conjecture](#page-2-0)

Notations

- Let $\Gamma = (V(\Gamma), E(\Gamma), w)$ be a connected and weighted graph with $V(\Gamma) = \{v_1, v_2, \ldots, v_n\},\$ $E(\Gamma) \subseteq \{ \{v_i, v_j\} \mid v_i \neq v_j \in V(\Gamma) \},\$ and $w: E(\Gamma) \to \mathbb{R}^+, \{v_i, v_j\} \mapsto w(\{v_i, v_j\}).$
- Consider w as a map on $[n] \times [n]$ by letting

 $w_{ij} = w_{ji} = w(\{v_i, v_j\}) > 0, \quad \forall \{v_i, v_j\} \in E(\Gamma),$

and $w = 0$ everywhere else.

where $[n] = \{1, 2, \ldots, n\}.$

• Any unweighted graph can be seen as a weighted graph with every edge having weight 1.

Aldous' spectral gap conjecture (1992, [1])

For any unweighted and connected graph Γ , the random walk and the interchange process on Γ have the same relaxation time.

- This conjecture indicates that these two Markov chains converge to their respective stationary distributions at the same asymptotic rate.
- In 2010, this conjecture was confirmed in its general form for any weighted and connected graph Γ (see [2]).

- 1. D. Aldous, https://www.stat.berkeley.edu/∼aldous/Research/OP/sgap.html.
- 2. P. Caputo, T. M. Liggett, and T. Richthammer. Proof of Aldous' spectral gap conjecture. J. Amer. Math. Soc., 23(3):831-851, 2010.
- The adjacency matrix of Γ is $A(\Gamma) = (a_{ij})_{n \times n}$ with $a_{ij} := w_{ij}$.
- The eigenvalues of Γ are defined to be the those of $A(\Gamma)$, denoted by $\lambda_1(\Gamma) > \lambda_2(\Gamma) > \cdots > \lambda_n(\Gamma)$.
- Γ is said to be regular with degree *k* if

$$
\sum_{j \in [n]} w_{ij} = k, \quad \forall \ i \in [n].
$$

• When Γ is connected and regular with degree *k*, we have

$$
\lambda_1(\Gamma) = k \text{ and } \lambda_2(\Gamma) < k,
$$

and $\lambda_1(\Gamma) - \lambda_2(\Gamma)$ is called the spectral gap of Γ .

Cayley graphs

• Let *G* be a finite group with the identity element *e*.

A symmetric weighted subset *S* of *G* satisfies

 $e \notin S$, $S = S^{-1} := \{ s^{-1} \mid s \in S \},\$ and $w_s = w_{s-1} > 0$, $\forall s \in S$. The weight of S is defined to be $|S| := \sum_{s \in S} w_s$.

• The Cayley graph $Cay(G, S)$ is the weighted graph with $V = G, \quad E = \{ \{g, gs\} \mid g \in G, s \in S \},\$ and w_s as the weight of the edge $\{q, qs\}$. We call *S* the connection set of Cay(*G, S*) and

 $Cav(G, S)$ is connected iff $G = \langle S \rangle$.

• $Cay(G, S)$ is regular with degree $|S|$.

Aldous' spectral gap conjecture

- Let S_n be the symmetric group on $[n]$.
- $(S_n)_1 = \{ \sigma \in S_n \mid \sigma(1) = 1 \}$ is the stabilizer of $1 \in [n]$ in S_n .

Aldous' spectral gap conjecture V.2

Let *T* be any weighted generating subset of *Sⁿ* consisting of transpositions. Then the weighted graph $\Gamma = \text{Cay}(S_n, T)$ has the same spectral gap as $\Gamma' = \text{Sch}(S_n, (S_n)_1, T).$

 \bullet $\Gamma' = \text{Sch}(S_n, (S_n)_1, T)$ is the Schreier coset graph with $V = \{H_i \mid H_i \text{ is a right coset of } (S_n)_1 \text{ in } S_n, 1 \le i \le n\},$ and \sum w_{τ} as the weight of $\{H_i, H_j\}.$ $\tau \in T$, \overline{H} *j*= H _{*i*} τ </sub>

• Γ and Γ' are both regular with degree $|T| \Rightarrow \lambda_1(\Gamma) = \lambda_1(\Gamma') = |T|.$

[Representation theory of sym](#page-8-0)[metric groups](#page-8-0)

Representation theory of finite groups

Definition [3]

A **matrix representation** of a finite group *G* is a group homomorphism

 $\phi: G \to \text{GL}_d$,

where GL*^d* is the complex general linear group of degree *d*. The parameter *d* is called the **degree** of *φ*.

Definition [3]

Let V be a vector space over $\mathbb C$ and of finite dimension $\dim(V)$ and G be a finite group. Then *V* is a *G***-module** if there is a group homomorphism

 $\rho: G \to \text{GL}(V)$.

where $GL(V)$ is the general linear group of V .

• We are using $g\mathbf{v}$ as a shorthand for the application of the transformation $\rho(g)$ to the vector **v**.

3. B. Sagan. The symmetric group: representations, combinatorial algorithms, and symmetric functions. Vol. 203. Springer Science & Business Media, 2001. 7

Definition [3]

Let *W* and *V* be *G*-modules. Then a *G***-homomorphism** (or simply a homomorphism) is a linear transformation $\theta : W \to V$ such that $\theta(q\mathbf{w}) = g\theta(\mathbf{w})$ for all $g \in G$ and $\mathbf{w} \in W$. If $\theta : W \to V$ is also bijective, then we say θ is a *G***-isomorphism**. In this case we say that *W* and *V* are *G***-isomorphic**,

or *G*-equivalent, written $W \cong V$. Otherwise we say that *W* and *V* are *G***-inequivalent**.

• Matrix representations *X* and *Y* of a group *G* are equivalent if and only if there exists a fixed matrix *T* such that $Y(g) = TX(g)T^{-1}$ for all $g \in G$.

Example [3]

The *trivial representation* of *G* sends every $g \in G$ to the matrix (1).

Example [3]

A finite group *G* acts on itself by right multiplication:

if *g, h* ∈ *G*, the action of *g* on *h* equals *hg*[−]¹ .

The *(right)* regular representation \mathbb{R}_{G} of *G* is of degree $|G|$ and for every $q \in G$,

$$
R_G(g) = (r_{s,h})_{|G| \times |G|}
$$
 with $r_{s,h} = \begin{cases} 1, & \text{if } hg^{-1} = s; \\ 0, & \text{otherwise.} \end{cases}$

• For any weighted subset *S* ⊂ *G*,

$$
A\big(\text{Cay}(G, S)\big) = \sum_{g \in S} w_g R_G(g).
$$

The (*s, h*)-entry of the left is

$$
\sum_{\substack{g \in S \\ h = sg}} w_g.
$$

The (*s, h*)-entry of the right is

$$
\sum_{g \in S} w_g \big(R_G(g) \big)_{s,h} = \sum_{\substack{g \in S \\ hg^{-1} = s}} w_g
$$

• We use *Rⁿ* to indicate the (right) regular representation of *Sn*. Then for any weighted subset *S* of S_n , we have

$$
A(\text{Cay}(S_n, S)) = \sum_{\sigma \in S} w_{\sigma} R_n(\sigma).
$$

Example [3]

The map $\phi(\sigma) = \text{sgn}(\sigma)$, $\forall \sigma \in S_n$ is a nontrivial representation of S_n

with degree 1, called the *sign representation of* S_n .

Example [3]

The **defining representation** D_n of S_n is of degree *n* and for all $\sigma \in S_n$,

$$
D_n(\sigma) = (d_{i,j})_{n \times n} \text{ with } d_{i,j} = \begin{cases} 1, & \text{if } \sigma(j) = i; \\ 0, & \text{otherwise.} \end{cases}
$$

• For any weighted subset $S \subset S_n$,

$$
A(\mathrm{Sch}(S_n,(S_n)_1,S)) = \sum_{\sigma \in S} w_{\sigma} D_n(\sigma).
$$

The (*i, j*)-entry of the left is

$$
\sum_{\substack{\sigma \in S \\ H_j = H_i \sigma}} w_{\sigma}.
$$

The (*i, j*)-entry of the right is

$$
\sum_{\sigma \in S} w_{\sigma} (D_n(\sigma))_{i,j} = \sum_{\substack{\sigma \in S \\ \sigma(j)=i}} w_{\sigma}.
$$

Definition [3]

Let *V* be a *G*-module. A *submodule* of *V* is a subspace *W* that is closed under the action of *G*, i.e.,

 $\mathbf{w} \in W \Rightarrow q\mathbf{w} \in W$ for all $q \in G$.

Equivalently, *W* is a subset of *V* that is a *G*-module in its own right. We write $W \leq V$ if W is a submodule of V.

Example [3]

Any *G*-module, *V*, has the submodules $W = V$ as well as $W = \{0\},\$ where **0** is the zero vector. These two submodules are called **trivial**. All other submodules are called **nontrivial**.

Definition [3]

A nonzero *G*-module *V* is **reducible** if it contains a non-trivial submodule *W*. Otherwise, *V* is said to be **irreducible**. Equivalently, *V* is **reducible** if it has a basis B in which every $g \in G$ is assigned a block matrix of the form $X(g) =$ $\sqrt{ }$ $\overline{1}$ *A*(*g*) *B*(*g*) $0 \tC(g)$ \setminus $\big\}$, where the $A(g)$ are square matrices, all of the same size, and 0 is a nonempty matrix of zeros.

Definition [3]

Let *V* be a vector space with subspaces *U* and *W*. Then *V* is the **(internal) direct sum** of *U* and *W*, written $V = U \oplus W$, if every $v \in V$ can be written uniquely as a sum $\mathbf{v} = \mathbf{u} + \mathbf{w}$, $\mathbf{u} \in U$, $\mathbf{w} \in W$. If X is a matrix, then *X* is the **direct sum** of matrices *A* and *B*, written $X = A \oplus B$, if X has the block diagonal form $X=\emptyset$ $\sqrt{ }$ $\overline{1}$ *A* 0 0 *B* \setminus \cdot

Maschke's Theorem

Maschke's Theorem [3]

Let *G* be a finite group and let *V* be a nonzero *G*-module. Then *V* = *W*⁽¹⁾ ⊕ *W*⁽²⁾ ⊕ · · · ⊕ *W*^(*k*),

where each $W^{(i)}$ is an irreducible G-submodule of $V.$

Maschke's Theorem [3]

Let *G* be a finite group and let *X* be a matrix representation of *G* of degree *d >* 0. Then there is a fixed matrix *T* such that every matrix $X(q)$ *,* $q \in G$ *, has the form*

$$
TX(g)T^{-1} = \begin{pmatrix} X^{(1)}(g) & 0 & \cdots & 0 \\ 0 & X^{(2)}(g) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X^{(k)}(g) \end{pmatrix},
$$

where each $X^{\left(i\right)}$ is an irreducible matrix representation of $G.$

Definition [3]

A representation is **completely reducible** if it can be written as a direct

sum of irreducible representations.

So Maschke's theorem could be restated:

Maschke's Theorem [3]

Every (complex) representation of a finite group having positive dimension is completely reducible.

Definition [3]

Let $X(g)$, $g \in G$, be a matrix representation. Then the *character* of X is

$$
\chi(g) = \text{tr } X(g),
$$

where tr denotes the trace of a matrix. In other words, χ is the map $G \stackrel{\text{tr } X}{\longrightarrow} \mathbb{C}.$

If *V* is a *G*-module, then its character is the character of a matrix representation *X* corresponding to *V* .

If X and Y both correspond to V , then $Y = TXT^{-1}$ for some fixed T . Thus, for all $q \in G$,

$$
\operatorname{tr} Y(g) = \operatorname{tr} TX(g)T^{-1} = \operatorname{tr} X(g).
$$

Characters

If X has character χ , we say that χ is irreducible whenever X is.

Example [3]

We consider the defining representation of S_n with its character $\chi^{\mathrm{def}}.$ It is not hard to see that if $\sigma \in S_n$, then

 $\chi^{\rm def}(\sigma) =$ the number of fixedpoints of $\sigma.$

Example [3]

Consider the regular representation of G and denote its character by $\chi^\mathrm{reg.}$

Then we have

$$
\chi^{\text{reg}}(g) = \begin{cases} |G|, & \text{if } g = e; \\ 0, & \text{otherwise.} \end{cases}
$$

Characters

Proposition [3]

Let X be a matrix representation of G of degree d with character χ .

- 1. $\chi(e) = d$.
- 2. If *K* is a conjugacy class of *G*, then

$$
g,h\in K\Longrightarrow \chi(g)=\chi(h).
$$

3. For any
$$
g \in G
$$
, $\chi(g^{-1}) = \overline{\chi(g)}$.

Definition [3]

Let χ and ϕ be any two functions from a group G to the complex numbers

C. The **inner product** of *χ* and *φ* is

$$
\langle \chi, \phi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\phi(g)}.
$$

Proposition [3]

Let χ and ϕ be characters; then

$$
\langle \chi, \phi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \phi(g^{-1}).
$$

Character Relations of the First Kind [3]

If χ and ϕ are irreducible characters of *G*, then

 $\langle \chi, \phi \rangle = \delta_{\chi, \phi}.$

Character Relations of the First Kind

Corollary [3]

Let X be a matrix representation of G with character χ . Suppose

$$
X \cong m_1 X^{(1)} \oplus m_2 X^{(2)} \oplus \cdots \oplus m_k X^{(k)},
$$

where the $X^{(i)}$ are pairwise inequivalent irreducibles with characters $\chi^{(i)}$ and $m_i X^{(i)} = \underbrace{X^{(i)} \oplus X^{(i)} \oplus \cdots \oplus X^{(i)}}$. $\overbrace{m_i}$ *mi* 1. $\chi = m_1 \chi^{(1)} + m_2 \chi^{(2)} + \cdots + m_k \chi^{(k)}$. 2. $\langle \chi, \chi^{(j)} \rangle = m_j$ for all *j*. 3. $\langle \chi, \chi \rangle = m_1^2 + m_2^2 + \dots + m_k^2$.

- 4. *X* is irreducible if and only if $\langle \chi, \chi \rangle = 1$.
- 5. Let *Y* be another matrix representation of *G* with character *φ*. Then $X \cong Y$ if and only if $\chi(q) = \phi(q)$

for all $g \in G$.

Proposition [3]

Let G be a finite group and suppose $R_G = \mathop{\oplus}\limits_i m_iX^{(i)}$, where the $X^{(i)}$ form a complete list of pairwise inequivalent irreducible matrix representations of *G*. Then

- 1. $m_i = \text{deg} X^{(i)}$,
- 2. Σ *i* $(\text{deg}X^{(i)})^2 = |G|$, and
- 3. The number of $X^{(i)}$ equals the number of conjugacy classes of $G.$

Theorem [4]

Let *G* be a finite group and *S* a (symmetric) weighted subset of *G*. $G = \{X^{(1)}, X^{(2)}, \cdots, X^{(k)}\}$ is a complete set of inequivalent (complex) irreducible matrix representations of *G*. Then the adjacency matrix of $\text{Cay}(G,S) = \sum_{s \in S} w_s R_G(s)$ is similar to $d_1 X^{(1)}(S) \oplus d_2 X^{(2)}(S) \oplus \cdots \oplus d_k X^{(k)}(S)$ $\text{where} \ \ d_i \ \ \text{is the degree of} \ \ X^{(i)}, \ \ X^{(i)}(S) \ = \ \sum_{s \in S} w_s X^{(i)}(s), \ \ \text{and}$ $d_i X^{(i)}(S) = \frac{X^{(i)}(S) \oplus X^{(i)}(S) \oplus \cdots \oplus X^{(i)}(S)}{S}$ $\overline{d_i}$ d_i *.*

4. M. Krebs and A. Shaheen. Expander families and Cayley graphs: a beginner's guide. Oxford Univ. Press, 2011.

Definition [3]

A sequence of positive integers $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_m)$, satisfying $\gamma_1 \geq \gamma_2 \geq$ $\ldots \gamma_m > 0$ and $n = \sum_{i=1}^m \gamma_i$, is called a *partition* of *n*, denoted by $\gamma \vdash n$.

- For each $\gamma \vdash n$, there is a corresponding irreducible representation ρ_{γ} of S_n , known as the **Specht module**, with degree d_γ .
- $\widehat{S_n} := \{ \rho_\gamma \mid \gamma \vdash n \}$ is a complete set of inequivalent irreducible matrix representations of *Sn*.
- $\rho_{(n)}$: trivial representation of S_n with $d_{(n)} = 1$ $\rho_{(1^n)}$: sign representation of S_n with $d_{(1^n)}=1$ ρ _(*n*−1,1): **standard representation** of S_n with $d_{(n-1,1)} = n-1$

Decomposition of Rⁿ [3]

For the regular representation R_n of S_n , there is a fixed matrix M such that

$$
MR_n(\sigma)M^{-1} = \bigoplus_{\gamma \vdash n} d_{\gamma}\rho_{\gamma}(\sigma), \quad \forall \ \sigma \in S_n.
$$

Here $d_{\gamma}\rho_{\gamma}(\sigma) = \underbrace{\rho_{\gamma}(\sigma) \oplus \rho_{\gamma}(\sigma) \oplus \cdots \oplus \rho_{\gamma}(\sigma)}_{d_{\gamma}}.$

Decomposition of Dⁿ [3]

For the defining representation D_n of S_n , there is a fixed matrix M such that

$$
MD_n(\sigma)M^{-1} = \rho_{(n)}(\sigma) \bigoplus \rho_{(n-1,1)}(\sigma), \quad \forall \sigma \in S_n.
$$

Application of representation theory

• Let *S* be any weighted subset of *Sⁿ* and

$$
\rho_{\gamma}(S) := \sum_{\sigma \in S} w_{\sigma} \rho_{\gamma}(\sigma), \quad \forall \ \gamma \vdash n \tag{1}
$$

• $A(\text{Cay}(S_n, S)) = \sum_{\sigma \in S} w_{\sigma} R_n(\sigma)$ is similar to

$$
\bigoplus_{\gamma \vdash n} d_{\gamma} \rho_{\gamma}(S). \tag{2}
$$

 $A\big(\text{Sch}(S_n, (S_n)_1, S)\big) = \sum_{\sigma \in S} w_{\sigma} D_n(\sigma)$ is similar to $\rho_{(n)}(S) \bigoplus \rho_{(n-1,1)}(S).$ (3)

• If $\gamma = (n)$, we have $d_{\gamma} = 1$ and $d_{\gamma} \rho_{\gamma}(S) = \rho_{\gamma}(S) = |S|$.

When *S* is symmetric and generates *Sn*,

$$
\lambda_2(\text{Cay}(S_n, S)) = \max_{\substack{\gamma \vdash n \\ \gamma \neq (n)}} \lambda_1(\rho_\gamma(S)) < |S|,\tag{4}
$$

$$
\lambda_2(\text{Sch}(S_n, (S_n)_1, S)) = \lambda_1(\rho_{(n-1,1)}(S)) < |S|.
$$
\n(5)

Aldous property

Aldous' Spectral Gap Conjecture V.3

Let *T* be any weighted generating subset of *Sⁿ* consisting of transpositions. The second largest eigenvalue of $Cay(S_n, T)$ is obtained by the standard representation $\rho_{(n-1,1)}$, that is,

 $\lambda_2(Cay(S_n, T)) = \lambda_1(\rho_{(n-1,1)}(T)).$

In general, the **strictly second largest eigenvalue** of a regular graph is the largest eigenvalue strictly smaller than the degree of the graph.

Definition [7]

For any symmetric weighted subset $S \subset S_n$, we say that $Cay(S_n, S)$ has the **Aldous property** if its strictly second largest eigenvalue is attained by the standard representation of *Sn*, that is,

$$
\lambda_{t+1}(\mathrm{Cay}(S_n, S)) = \lambda_1(\rho_{(n-1,1)}(S)),
$$

where $t := [S_n : \langle S \rangle]$ is the index of $\langle S \rangle$ in S_n .

Definition

For any symmetric weighted subset *S* of a group *G*, Cay(*G, S*) is said to be **normal** if the weights of *S* are constant on any conjugacy class of *G*, that is, $w_s = w_{g^{-1}sa}$, for any $g \in G$ and $s \in S$.

• $\Gamma = \text{Cay}(S_n, T)$ is normal if and only if

T consists of all transpositions in *Sn*,

and $w_{\tau} = c$ for every $\tau \in T$,

where *c* is a fixed positive integer. In this case, we can regard $\Gamma =$ $Cay(S_n, T)$ as a unweighted graph.

Proposition [5, 6]

Let $\{\chi_1, \chi_2, \ldots, \chi_k\}$ be a complete set of inequivalent irreducible characters of *G*. Then the eigenvalues of any weighted normal Cayley graph $Cay(G, S)$ on G are given by

$$
\lambda_j = \frac{1}{\chi_j(e)} \sum_{s \in S} w_s \chi_j(s) = \sum_{s \in S} w_s \tilde{\chi}_j(s), \quad j = 1, 2, \dots, k.
$$

Moreover, the multiplicity of λ_j is equal to $\sum_{1\leq i\leq k,\;\lambda_i=\lambda_j}\chi_i(e)^2.$

- 5. P. Diaconis and M. Shahshahani. Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheor. Verw. Geb., 57(2):159-179, 1981.
- 6. P. H. Zieschang. Cayley graphs of finite groups. J. Algebra, 118(2):447-454, 1988.

[Generalizations](#page-32-0)

Definition

For any $\sigma \in S_n$, the **support** of σ is defined to be $\text{supp}(\sigma) := \{i \in [n] \mid \sigma(i) \neq i\}.$

For $\emptyset \neq I \subseteq \{2, 3, \ldots, n-1, n\}$ and $2 \leq k \leq n$, set

$$
T(n, I) = \{ \sigma \in S_n \mid |\text{supp}(\sigma)| \in I \}
$$

and

$$
T(n,k) = \{ \sigma \in S_n \mid 2 \leq |\text{supp}(\sigma)| \leq k \}.
$$

Theorem 1 [7]

There exists a positive integer N such that for every $n > N$ and any conjugacy class *S* of S_n , the normal Cayley graph $Cay(S_n, S)$ has the Aldous property if and only if $2 \leq |\text{supp}(\sigma)| \leq n-2$ for some (and hence all) $\sigma \in S$.

Theorem 2 [7]

There exists a positive integer *N* such that for every $n \geq N$ and any $\emptyset \neq \emptyset$ *I* ⊂ $\{2, 3, ..., n-1, n\}$ with $|I \cap \{n-1, n\}|$ \neq 1, the normal Cayley graph $Cay(S_n, T(n, I))$ has the Aldous property if and only if $I \cap {n-1, n} = \emptyset$.

7. Y. Li, B. Xia and S. Zhou. Aldous' spectral gap property for normal Cayley graphs on symmetric groups. Submitted. 2022.

Normal Cayley graphs having the Aldous property

Theorem 3 [7]

There exists a positive integer N such that for every $n \geq N$ and any $2 \leq k \leq n$, the connected normal Cayley graph $\text{Cay}(S_n, T(n, k))$ has the Aldous property.

- Theorem 3 generalizes the normal case of Aldous' conjecture.
- $S(n,k) := \{\sigma \in S_n \mid \sigma \text{ fixes } k \text{ elements}\}\$ with $0 \leq k \leq n-2$
- The *k*-point fixing graph is defined to be $\mathcal{F}(n,k) = \text{Cay}(S_n, S(n,k)).$

Corollary 4 [7]

There exists a positive integer N such that for every $n \geq N$, the k-pointfixing graph $\mathcal{F}(n, k)$ has the Aldous property if and only if $2 \leq k \leq n-2$.

7. Y. Li, B. Xia and S. Zhou. Aldous' spectral gap property for normal Cayley graphs on symmetric groups. Submitted. 2022.

Problem 5 [7]

Give a necessary and sufficient condition for $Cay(S_n, T(n, I))$ with $\{n-\}$

 1 } $\subset I \subset \{2, 3, \ldots, n-2, n-1\}$ to have the Aldous property for sufficiently

large *n*.

Problem 6 [7]

Give a necessary and sufficient condition for $Cay(S_n, T(n, I))$ with $\{n\} \subset$ $I \subseteq \{2, 3, \ldots, n-2, n\}$ to have the Aldous property for sufficiently large

n.

7. Y. Li, B. Xia and S. Zhou. Aldous' spectral gap property for normal Cayley graphs on symmetric groups. Submitted. 2022.

Proposition 2.3 in [9]

There exists some positive integer *N* such that for every $n \geq N$ and any $\sigma \in S_n$ with $|f_{\text{IX}}(\sigma)| \geq 2$, we have

$$
\max_{\substack{\gamma \vdash n \\ \gamma \neq (n) \text{ or } (1^n)}} \tilde{\chi}_{\gamma}(\sigma) = \tilde{\chi}_{(n-1,1)}(\sigma). \tag{6}
$$

[9.] O. Parzanchevski and D. Puder. Aldous's spectral gap conjecture for normal sets. Trans. Amer. Math. Soc., 373(10):7067–7086, 2020.

Thank you for your attention.

Interchange process

- A state is identical to an element of the symmetric group *Sn*.
- \bullet The transition from a sate $\sigma \in S_n$ to a state σ^{ij} , occurring with rate w_{ij} , interchanges the particles at vertices *i* and *j*.
- The state σ^{ij} is $\sigma\tau_{ij}$, where τ_{ij} denotes the transposition $(i, j) \in S_n$.

- The random walk on Γ is the continuous-time Markov chain in which a single particle jumps from the vertex $i \in V(\Gamma)$ to *j* at rate w_{ij} .
- The state space of this random walk is $V(\Gamma) = \{1, 2, ..., n\}$.

A transition from the state 1 to the state 2